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Abstract

Background: When mathematical modelling is applied to many different application areas, a common task is the
estimation of states and parameters based on measurements. With this kind of inference making, uncertainties in the
time when the measurements have been taken are often neglected, but especially in applications taken from the life
sciences, this kind of errors can considerably influence the estimation results. As an example in the context of
personalized medicine, the model-based assessment of the effectiveness of drugs is becoming to play an important
role. Systems biology may help here by providing good pharmacokinetic and pharmacodynamic (PK/PD) models.
Inference on these systems based on data gained from clinical studies with several patient groups becomes a major
challenge. Particle filters are a promising approach to tackle these difficulties but are by itself not ready to handle
uncertainties in measurement times.

Results: In this article, we describe a variant of the standard particle filter (PF) algorithm which allows state and
parameter estimation with the inclusion of measurement time uncertainties (MTU). The modified particle filter, which
we call MTU-PF, also allows the application of an adaptive stepsize choice in the time-continuous case to avoid
degeneracy problems. The modification is based on the model assumption of uncertain measurement times. While
the assumption of randomness in the measurements themselves is common, the corresponding measurement times
are generally taken as deterministic and exactly known. Especially in cases where the data are gained from
measurements on blood or tissue samples, a relatively high uncertainty in the true measurement time seems to be a
natural assumption. Our method is appropriate in cases where relatively few data are used from a relatively large
number of groups or individuals, which introduce mixed effects in the model. This is a typical setting of clinical
studies. We demonstrate the method on a small artificial example and apply it to a mixed effects model of
plasma-leucine kinetics with data from a clinical study which included 34 patients.

Conclusions: Comparisons of our MTU-PF with the standard PF and with an alternative Maximum Likelihood
estimation method on the small artificial example clearly show that the MTU-PF obtains better estimations.
Considering the application to the data from the clinical study, the MTU-PF shows a similar performance with respect
to the quality of estimated parameters compared with the standard particle filter, but besides that, the MTU algorithm
shows to be less prone to degeneration than the standard particle filter.
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Background
Measurement time uncertainties
Uncertainty in the time at which a measurement is taken
is an often neglected source of random error. While in
many application areas, this kind of error is generally
small and indeed neglectable (due to automated measure-
ments and precise timings), in others it may be of real
influence, especially in the life sciences. As a prominent
example, one may consider pharmacokinetic and pharma-
codynamic (PK/PD) models which are used to describe
the metabolic interactions and the effects of a chemical
agent (like a drug or a labelled substance) over time inside
an organism, respectively.

A typical population experiment in the PK/PD con-
text consists in the analysis of the contents of the blood
plasma of several individuals with respect to concentra-
tions of certain molecules of interest. For this purpose,
blood probes have to be taken from each individual at cer-
tain (fixed) time points after a certain event has occurred
(e.g. a drug or a labelled substance has been applied). It
is clear from the setting of the experiments that there is
some variation in the real point in time when the blood
probe has been taken: the true time when the measure-
ment value has been obtained might be shortly before
or after the intended time, and this true measurement
time is not known to us. Since the inclusion of those
time uncertainties in the model usually makes the analysis
more difficult, it is standard to lump the time uncertain-
ties with the measurement error. But especially at early
times when concentrations change quickly, this may easily
lead to wrong estimations, even if one assumes very high
variances of the measurement error (we will demonstrate
this later on a simple example). On the other hand, the
inclusion of measurement time uncertainties (MTU) in
algorithms aiming at inference making in complex mod-
els is not straightforward. In this article, we will present
a modification of the Particle Filter (PF) algorithm (which
we call MTU-PF) which is able to fully include a statistical
model of the time uncertainties.

Inference in complex systems
The assessment of the effectiveness of a drug in a clinical
study has been done in the past by the direct computa-
tion of relatively simple statistical values. The enormous
increase in complexity of the underlying models, due
to present developments in medicine and biology, for
instance in the areas of personalized medicine or systems
biology, increases also the need for more sophisticated
model-based inference methods.

The estimation of unobservable internal variables or
model parameters from data which have been obtained
from blood or tissue samples at several time points can
reveal information on the concentrations and effective-
ness of the substance under question. If these data come

from individuals which belong to two different (or even
more) groups, e.g. test and control group, mixed effects
are introduced in the underlying models. The inherent
non-linearity and high variability of biological processes
adds considerably to the difficulties one faces during the
inference step. Inference in connection with dynamic
models plays a major role in many other application areas.
State and parameter estimation as well as model discrimi-
nation and validation are most common, but also optimal
control problems should be mentioned.

It is often not enough to consider (independent) mea-
surement noise [1]. Correlations between residuals are not
uncommon, and the violation of this statistical assump-
tion may lead to wrong estimates. A natural way to
include correlated noise is to model two different types
of noise: the dynamic (process or system) noise which is
present in the dynamics of the system states and origi-
nates either from true random fluctuations in the system
or from unmodelled dynamics in the system, and the mea-
surement noise which is introduced by the measurement
procedure or equipment and modelled by independent
residuals. One possible approach is to use state space
models which consist of a time-continuous model for
the system states, e.g. based on Stochastic Differential
Equations (SDEs), and a separate model for the time-
discrete measurements.

Parameter estimation with Maximum Likelihood approach
Parameter estimation in state space systems is a diffi-
cult problem. In a context where the system dynamics
are modelled by Ordinary Differential Equations (ODEs)
without correlated noise, the problem is most often
considered as a (deterministic) optimization problem
based on a Maximum Likelihood (ML) formulation. An
overview of these approaches can be found in [2] and [3];
see also [4], which consider also other aspects like iden-
tifiability. A generalization of the ML approach including
more flexible cost functions is given by the prediction
error estimation method ([5]). The introduction of system
noise in the state variables leads to optimization prob-
lems with SDE constraints. In this case, internal system
states which cannot be directly observed need to be esti-
mated jointly with the parameters, given the data. For
this purpose, the parameter estimation methods must
be augmented by appropriate state filtering methods. An
overview of ML parameter estimation in these types of
models is given in [6]. If the SDEs are non-linear, lineariza-
tions to the Kalman Filter, like the Extended Kalman Filter
(EKF) or the Unscented Kalman Filter (UKF), are used to
establish approximations to the means and covariances of
the filter distributions over time. All those approximations
suffer from the fact that they approximate the filtering dis-
tributions of the states by a Gaussian distribution at all
time points and cannot adequately approximate skewed
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or multimodal distributions. Better approximations are
provided by simulation based methods like Sequential
Monte Carlo (SMC) algorithms where good conver-
gence results have been established ([7]). Nevertheless,
they suffer from several drawbacks when applied to the
joint estimation of dynamic states and fixed parameters
([8-10], see also [11]).

Parameter estimation in a Bayesian context
In a Bayesian context, in contrast to the “classical” ML
approach, a prior distribution is assigned to the parame-
ter vector, hence the parameters can be treated as random
variables. In this sense, parameter estimation is done by
evaluating the so-called posterior distribution which can
be computed (at least theoretically) by Bayes’ theorem
given the observations (measurements) and the prior dis-
tribution. In the context of high-dimensional spaces, this
requires the computation of high-dimensional integrals
which is not possible to do analytically. For this purpose,
Markov Chain Monte Carlo (MCMC) methods provide
powerful tools for the computation of simulation-based
approximations to the posterior distribution. Again, in
the context of the joint estimation of dynamic states and
fixed parameters, the design of good proposal densities is
a very difficult problem which renders the use of standard
MCMC methods like the Metropolis-Hastings sampler
impractical for the purposes of parameter estimation in
state space systems.

It has long been a wish to combine both (dynamic)
SMC and (static) MCMC methods to provide a general
tool for the joint estimation of dynamic states and static
parameters. Only recently, Andrieu et al. [11] proposed a
very promising combination of both types of Monte Carlo
approaches called Particle Markov Chain Monte Carlo
(PMCMC) which is generally applicable and where also
convergence has been proved.

In the present article, even though the PMCMC
approach might be the preferred method for parameter
estimation in state space systems, we will concentrate
solely on the SMC methods, since our modification affects
only this part. However, to be able to do parameter esti-
mation in a pure SMC context, we rely on an approach
that is very often used to avoid problems with the esti-
mation of constant parameters. This approach consists
in the introduction of artificial dynamics in the param-
eters, that means the parameters are allowed to slightly
change their values over time. In this way, and in a
Bayesian context, the parameters can be treated exactly
in the same way as the system states. After building an
augmented system state by concatenating the parameter
vector and the state vector, the joint estimation of states
and parameters reduces to filtering of the augmented state
vector which makes SMC methods directly applicable to
the problem.

Particle filters for state and parameter estimation
Particle filters ([12-14]) belong to the class of SMC meth-
ods for state filtering in state space models. Using the
state augmentation approach, the method is also capable
of estimating system parameters. The standard particle fil-
ter is designed for discrete, non-linear, and non-Gaussian
models and can routinely be adapted to the continu-
ous case with measurements at discrete times. The idea
of the particle filter is that, at each time point, there is
a sample based representation (the weighted particles)
of the current estimate of the inner states and parame-
ters which is based on the measurements that have been
obtained up to the current time point. The particle cloud
is then propagated through time, and the particles and
weights are updated accordingly at each time point where
measurements are available.

Non-Linear Mixed Effects models
Estimation in a Non-linear Mixed Effects model (NLME)
involves the estimation of both global and individual
parameters. With classical maximum likelihood estima-
tion, the individual parameters are random variables
equipped with a distribution while the global parameters
remain constants with a “true” but unknown value. If the
underlying model equations are non-linear, this leads to
likelihood functions which are not analytically accessible
and one has to rely on approximations. In the context
where the system dynamics are modelled by ODEs, the
most popular algorithm for NLME parameter estimation
in the PK/PD context is the tool NONMEM ([15]). In
[1] an estimation algorithm for NLME models based on
Stochastic Differential Equations (SDEs) was proposed
that uses the First-Order Conditional Estimation (FOCE)
method to approximate the likelihood in combination
with the EKF estimation in the SDEs. This has been added
to NONMEM ([16]). In [17], a comparison between ODE
and SDE based parameter estimation has been performed
which showed that the interindividual variabilities were
in general estimated to be smaller for the SDE model.
Donnet and Samson ([18]) proposed a stochastic version
of the Expectation-Maximization (SAEM) algorithm (for
the estimation of the global parameters) in combination
with MCMC methods (for the estimation of states and
individual parameters). However, since MCMC exhibits
slow mixing properties in the context of the estima-
tion of states and parameters in state space models, in
[19] MCMC has been replaced by the more promising
PMCMC approach of Andrieu et al. ([11]).

On the other hand, in a Bayesian context, also the global
parameters are equipped with a (prior) probability dis-
tribution, and the conceptual difference between global
and individual parameters vanishes. The mixed effects
model can then be considered as a hierarchical model with
dependent parameters ([20,21], see also [22] for a more
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recent population-based Bayesian approach to PK/PD
modelling). Simulation-based (Monte Carlo) methods can
easily be adapted to this case. Nevertheless, the above
mentioned challenges to both SMC and MCMC methods
are even higher due to the increased number of states and
parameters in NLME models (the number of states and
individual parameters has to be multiplied by the number
of individuals).

Aim of the article
Our goal is two-fold: Firstly, we want to show that the par-
ticle filter algorithm is applicable (with our modifications)
also to more complex models when time uncertainties are
formulated explicitly. Secondly, we want to show that the
modification may even provide the possibility for further
enhancement of the performance of the algorithm by pre-
senting an adaptive time-stepping scheme which is only
possible in the context of the new algorithm.

We do not claim that our MTU algorithm generally per-
forms better or worse than the standard filter, nor that
it should be the preferred method for estimation in non-
linear mixed effects models. Rather, we provide a method
which is usable for models where time uncertainties may
play a major role. In these cases, it may indeed lead to bet-
ter estimations. On the other hand, our method transfers
the time-discrete particle filter approach, where updates
based on the measurements very strictly depend on the
measurement times, to a truly time-continuous approach,
where updates to the filtering distributions can be per-
formed at every point on the time-scale. Since we want to
focus on the time uncertainties, we neglect discussing fur-
ther issues like identifiability, model evaluation and model
discrimination. In our application to the model of plasma-
leucine kinetics, we try to avoid these issues by providing
ad-hoc values to some of the parameters (especially to the
variances of the system states).

Motivating example
Let us have a look at an example for illustrating the ben-
efits of a separate modelling of measurement time uncer-
tainties. Let us consider a state space system given by the
ODE

dq(t) = (−αq(t) + β) dt

with parameters α, β ∈ R. Here q(t) ∈ R denotes the
state of the system at time t. We call the state trajecto-
ries obtained by this deterministic system the nominal
evolutions of the states. We add noise to the system in a
standard way by introducing an additional term σ dWt ,
with a standard Wiener process (Wt)t∈R≥0 and a diffu-
sion parameter σ ∈ R. This leads to the following SDE
describing the evolution of the state q over time:

dq(t) = (−αq(t) + β) dt + σ dWt .

Furthermore, let the initial state q(0) be given by a log-
normal distribution with parameters μq0 and σ 2

q0 (mean
and variance of the logarithm of q(0), respectively). The
parameters chosen in our implementation of this example
are shown in Table 1.

We assume that M measurements of the state q(t) will
be taken at times tj and that each measurement j, j =
1, . . . , M is disturbed by normal noise with mean q(tj)
and with a fixed variance σ 2

y , i.e. measurement j is dis-
tributed according to yj ∼ N (q(tj), σ 2

y ). Usually, the times
tj are assumed to be known. In contrast, we will assume
that in addition to the measurement value error, there is
some uncertainty about the exact times where the mea-
surements have been taken. If we attempt to take the jth
measurement at the intended (or nominal) time t̂j, the
measurement in fact takes place at time tj which may be
shortly before or after the intended time t̂j. A natural way
to model these uncertainties is to assume that the mea-
surement time tj is given as a realization of a random
variable Tj. In our example, we assume that Tj follows a
truncated normal distribution given by the density

γj(tj) := 1
�j

⎧⎪⎪⎨
⎪⎪⎩

exp
(

(tj − t̂j)2

0.32

)
if max{0, t̂j − 1}

≤ tj ≤ t̂j + 1,
0 otherwise

with normalizing constant

�j :=
∫ t̂j+1

max{0,t̂j−1}
exp

(
(tj − t̂j)2

0.32

)

and given intended measurement times t̂j. Figure 1 shows
the different distributions for one measurement j for all
possible intended times t̂j. In each of the subfigures (a)-
(d), the shaded green area gives an impression of the
“density” of the distribution of the measurement value yj
in dependence of the intended measurement time t̂j on
the x-axis, while the dark-green dashed line depicts the
nominal evolution of the state q over time. Subfigure (a)
shows the distribution of the measurement values with
time uncertainties, while (b)-(d) depict the distribution of
the measurement values with known measurement times
(in this case t̂j = tj), for several standard deviations σy: in

Table 1 Parameters for the motivating example

true value of α 1

true value of β 3

σ 0.05

μq0 log(1)

σq0 0.1

σy 0.005

distribution of Tj N (t̂j , 0.32) truncated at t̂j ± 1 and at t0
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Figure 1 Assumed measurement distributions for the motivating example. Measurement distribution resulting from (a) separate modelling of
measurement time uncertainties and measurement value uncertainties, with σy = 0.005, and (b-d) lumped time-and-value uncertainties with
several different assumed lumped measurement variances σy . The dashed dark-green line depicts the nominal evolution of the state q over time.
The green shaded area depicts the region where the measurements are expected.

(b), the original standard deviation is used, while in (c) and
(d), higher standard deviations are used which correspond
to the cases with lumped value and time variations.

Comparing Figures 1(a) and 1(b-d), we observe that the
distributions of the measurements exhibit clearly differ-
ent shapes. For the “true” model depicted in Figure 1(a),
if we consider a single point in time that lies in a time
segment where the state values change quickly, the distri-
bution of the measurement at this certain point in time is
quite broad. The variance in the measured value is very
high, whereas it is small in time segments where the state
values change slowly. In contrast, for the standard parti-
cle filter, the measurement variance is constant and hence
the assumed measurement distributions differ remarkably
from the “true” distributions, howsoever the value of σ 2

y is
chosen. It must be expected that this leads to difficulties

when inference on the states and parameters needs to be
done based on these models. We will resume our exam-
ple after having presented the MTU particle filter and will
show that this is indeed the case.

Methods
We divide this section into three subsections. In the
first subsection, we fix the state and observation model
we want to consider. In the second subsection entitled
“Standard case” we outline the standard particle filter
algorithm in the context of time-continuous states with
time-discrete measurements, and the various probability
distributions involved. Although nothing is new in this
subsection, it serves several purposes. Firstly, the time-
continuous case is relatively rarely considered in the liter-
ature; secondly, the derivation of our modification needs
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a slightly more general formulation than it is standard
for the discrete-time filter; and lastly, the comparison of
our modified version with the standard case might more
clearly reveal the differences between the two approaches.
In the third subsection entitled “MTU particle filter”, we
present our new modification of the particle filter. In the
following section “Results and Discussion”, we compare
the new MTU particle filter to the standard particle fil-
ter and to an alternative Maximum Likelihood estimation
method on a simple artificial example. We also present
an application of our MTU-PF method to a PK/PD study
in a non-linear mixed-effects setting in direct comparison
with the standard particle filter.

Note: a list of all used symbols with a short explanation
can be found at the end of this paper.

The model
State process
Let (�,A, P) be a probability space and for each t ∈
[ t0, ∞) with t0 ∈ R let (Xt ,BXt ) be an arbitrary measur-
able space. For each t ∈ [ t0, ∞) let further Xt : � → Xt be
an A-BXt measurable random variable such that X[t0,∞)

:= (Xt)t∈[t0,∞) is a continuous-time Markov process with
general state space

X[t0,∞) : =
∏
t0≤s

Xs.

For each t ∈ [ t0, ∞), denote by LXt the pushforward
measure of P under Xt , i.e. LXt (B) : = P(X−1

t (B)) for
all B ∈ BXt . Further, denote by LX[t0,∞)

the pushfor-
ward measure of P under X[t0,∞) : = (Xs)s∈[t0,∞) (with the
corresponding product algebra). Analogously, denote by

X[t0,t] :=
∏

t0≤s≤t
Xs for each t ≥ t0

the state space restricted to the interval [ t0, t], and denote
by LX[t0,t] the corresponding pushforward measure. For
each s and t with t > s ≥ t0, let Ks,t(xs, dxt) be the Markov
kernel of the process X[t0,∞) from time s to time t.

An important special case for X[t0,∞) is given by a mul-
tidimensional Itô process on Xt = Rn (equipped with
the corresponding Borel σ -algebra) defined through a
stochastic differential equation (SDE)

dXt = a(Xt , t) dt + B(Xt , t) dWt

with drift a(x, t), diffusion matrix B(x, t), multidimen-
sional standard Wiener process Wt , and initial variable
Xt0 . In this case, it is possible to sample directly (at
least approximately) from the kernels Ks,t when a suit-
able discretization method is applied, for instance the
Euler-Maruyama method.

Observations / measurements
Let the process X[t0,∞) be observed via M random vari-
ables Y1:M with values in measurable spaces (Yj,BYj).
Each single observation (measurement) Yj depends on the
state variable Xtj at some time tj and on the observation
time (measurement time) tj itself. We assume that, given
the observation time tj and the state Xtj = xtj , the variable
Yj is independent of all other variables, and the condi-
tional measure can be expressed via some conditional
probability density gj(yj | xtj , tj) with respect to a reference
measure μYj on (Yj,BYj). We do not require any further
restrictions on g such as linear dependence on the states
or Gaussianity.

Observation / measurement times
The observation times (measurement times) tj for j =
1, . . . , M are usually assumed to be deterministically given
and known. Our variant of the particle filter will be based
on the assumption that the observation times tj are them-
selves realizations of random variables Tj. These variables
model the uncertainty about exact observation times. In
contrast to the observation variables Yj, the observation
times Tj are never observed (measured). We assume that
all information available to us is their probability distri-
bution on the half axis [ t0, ∞), while in the case of the
observations Yj, we know both the densities gj(yj | xtj , tj)
and the observed values yj.

In this article, we will only consider the simplest case
where each variable Tj is independent of all others.
Dependencies between the Tj’s, especially concerning the
order of the observation times, may be considered natural
but would lead to more complicated algorithms. How-
ever, order dependencies can easily be introduced via
restrictions on the support of the variables. In general, the
probability distribution of every single variable Tj shall
be given by a density γj(tj) with respect to the Lebesgue
measure λ[t0,∞) on the interval [ t0, ∞).

In the following, we will consider the two cases men-
tioned, where either all tj are deterministic and known
or all tj are random and unknown. Note that the first
case formally coincides with the case that tj is random
but observed. We will therefore stick to the notation
gj(yj | xtj , tj) for the observation densities in both cases.

Standard case: measurement times deterministic and
known
We will first consider the standard case, where the obser-
vation times tj are known. For simplicity, we assume
here that the observation times t1:M are strictly ordered
increasingly, i.e. t0 < t1 < · · · < tM.

The standard case of the particle filter is usually for-
mulated for discrete-time Markov processes Xt0:M : =
(Xtj)j∈{0,...,M} with general state space where the state vari-
ables are only defined at the initial time t0 and at the times
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t1, . . . , tM when measurements occur. Nevertheless, this
case is included in our more general framework where Xt
is defined for all t ≥ t0. One just focuses on the state
variables for those times only. In view of the later general-
ization to random observation times, we will consider the
fixed values tj as realizations of random variables Tj and
condition all occurring densities on them. As mentioned
above this assumption leads to the same results as if we
assumed the values tj to be given deterministically.

Full model and filter model
The full model is given by the joint density of the vari-
ables Xt0:M and Y1:M (conditioned on the observation
times T1:M = t1:M) with respect to the product measure
LXt0:M

∏M
j=1 μYj :

f Xt0:M ,Y1:M | T1:M (xt0:M , y1:M | t1:M) :=
M∏

j=1
gj(yj | xtj , tj).

(1)

The filter at a given time tk is based on a reduced model.
This model is given by the joint density of the variables
Xt0:k and Y1:k (conditioned on T1:M = t1:M) with respect
to the product measure LXt0:k

∏k
j=1 μYj :

f Xt0:k ,Y1:k | T1:M (xt0:k , y1:k | t1:M) :=
k∏

j=1
gj(yj | xtj , tj). (2)

This density is based on the state sequence Xt0:k . In con-
trast, we can focus on the single state Xtk by considering
the joint density of the variables Xtk and Y1:k (given T1:M =
t1:M) with respect to LXtk

∏k
j=1 μYj . It can be computed by

marginalization as follows:

f Xtk ,Y1:k | T1:M (xtk , y1:k | t1:M)

:=
∫

{
x̃t0:k ∈Xt0:k : x̃tk =xtk

} f Xt0:k ,Y1:k | T1:M
(
x̃t0:k , y1:k | t1:M

)
× dLXt0:k

(
x̃t0:k

)
(3)

and the filter density at time tk with respect to LXtk
can

then be computed with Bayes’ theorem:

f Xtk | Y1:k ,T1:M (xtk | y1:k , t1:M) := f Xtk ,Y1:k | T1:M (xtk , y1:k | t1:M)

f Y1:k | T1:M (y1:k | t1:M)

(4)

with

f Y1:k | T1:M (y1:k | t1:M)

:=
∫
Xt0:k

f Xt0:k ,Y1:k | T1:M
(
xt0:k , y1:k | t1:M

)
dLXt0:k

(
xt0:k

)
.

(5)

For general (non-linear) models, the practical computa-
tion of the filter density is very difficult. Nevertheless,

the particle filter computes a Monte Carlo approxima-
tion using the fact that the filter densities f Xtk | Y1:k ,T1:M can
be computed recursively. This is done in two steps. We
consider the filter distribution at time tk−1 given by the
probabilities

P
(
Xtk−1 ∈ B | Y1:k−1 = y1:k−1, T1:M = t1:M

)
=

∫
B

f Xtk−1 | Y1:k−1,T1:M
(
xtk−1 | y1:k−1, t1:M

)
dLXtk−1

(
xtk−1

)
(6)

for each set B ∈ BXtk−1
. We then get first the predic-

tion distribution, i.e. the distribution of Xtk given the data
Y1:k−1 (and T1:M), by use of the kernel Ktk−1,tk :

P(Xtk ∈ B | Y1:k−1 = y1:k−1, T1:M = t1:M)

=
∫

B

∫
Xtk−1

f Xtk−1 | Y1:k−1,T1:M
(
xtk−1 | y1:k−1, t1:M

)
× dLXtk−1

(
xtk−1

)
Ktk−1,tk

(
xtk−1 , dxtk

)
(7)

for each set B ∈ BXtk
. Then we use Bayes’ theorem to get

the filter distribution at time tk :

P(Xtk ∈ B | Y1:k = y1:k , T1:M = t1:M)

=
∫

B

gk(yk | xtk , tk)

f Yk | Y1:k−1,T1:M (yk | y1:k−1, t1:M)
·∫

Xtk−1

f Xtk−1 | Y1:k−1,T1:M (xtk−1 | y1:k−1, t1:M)

× dLXtk−1

(
xtk−1

)
Ktk−1,tk

(
xtk−1 , dxtk

)
(8)

for each set B ∈ BXtk
, with normalizing constant

f Yk | Y1:k−1,T1:M (yk | y1:k−1, t1:M)

:=
∫
Xtk

gk(yk | xtk , tk)·∫
Xtk−1

f Xtk−1 | Y1:k−1,T1:M
(
xtk−1 | y1:k−1, t1:M

)
× dLXtk−1

(
xtk−1

)
Ktk−1,tk

(
xtk−1 , dxtk

)
.

(9)

Importance sampling
Another ingredient for the particle filter is sequential
importance sampling. We assume that a second Markov
chain X̃t0:M on the same state space is given with push-
forward measures LX̃tj

and kernels K̃tj−1,tj

(
xtj−1 , dxtj

)
for

j = 1, . . . , M. We assume that for each xtj−1 ∈ Xtj−1 ,
the measure Ktj−1,tj

(
xtj−1 , ·) is absolutely continuous with

respect to the measure K̃tj−1,tj

(
xtj−1 , ·). It follows that
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the Radon-Nikodym derivative (written as conditional
density)

	tj | tj−1(xtj | xtj−1) : = Ktj−1,tj(xtj−1 , dxtj)

K̃tj−1,tj(xtj−1 , dxtj)

exists. We further assume that the pushforward measure
LXt0

under Xt0 is absolutely continuous with respect to the
corresponding pushforward measure LX̃t0

under X̃t0 with
Radon-Nikodym derivative

	t0(xt0) := dLXt0
(xt0)

dLX̃t0
(xt0)

.

For sequential importance sampling, we need to be able to
sample from the initial measure LX̃t0

and from the kernels

K̃tj−1,tj

(
xtj−1 , ·)

for each xtj−1 ∈ Xtj−1 , and to compute 	t0(xt0) as well as
	tj | tj−1(xtj | xtj−1) pointwise.

Using

Ktk−1,tk

(
xtk−1 , dxtk

) = 	tk | tk−1

(
xtk | xtk−1

)
K̃tk−1,tk

(
xtk−1 , dxtk

)
,

we can then write the recursive formula (8) for the filter
distribution at time tk as

P(Xtk ∈ B | Y1:k = y1:k , T1:M = t1:M)

=
∫

B

gk(yk | xtk , tk)

f Yk | Y1:k−1,T1:M (yk | y1:k−1, t1:M)
·∫

Xtk−1

f Xtk−1 | Y1:k−1,T1:M
(
xtk−1 |y1:k−1, t1:M

)
	tk | tk−1

(
xtk |xtk−1

)
× dLXtk−1

(
xtk−1

)
K̃tk−1,tk (xtk−1 , dxtk )

(10)

for each B ∈ BXtk
. The direct computation of the normal-

izing constants f Yk | Y1:k−1,T1:M (yk | y1:k−1, t1:M) (while y1:M
is assumed to be fixed) is not necessary. Sequential impor-
tance sampling is performed as follows. Draw a number N
of realizations xi

t0 from LX̃t0
and compute the correspond-

ing unnormalized weights

wi
t0 := 	t0

(
xi

t0

)
for all i = 1, . . . , N .

Then, for all k = 1, . . . , M, sample realizations xi
tk

from
the kernel K̃tk−1,tk (xi

tk−1
, dxtk ) for each i = 1, . . . , N and

compute the unnormalized weights

wi
tk

: = 	tk | tk−1

(
xi

tk
| xi

tk−1

)
gk

(
yk | xi

tk
, tk

)
wi

tk−1
for all

i = 1, . . . , N .

For suitable integrable functions h (e.g. fulfilling some
mild restrictions on how fast h may increase with x, see
[23] for details), the expectation of h with respect to the

filter density conditioned on the observations Y1:k = y1:k ,
given by

E
[
h

(
Xtk

) | Y1:k = y1:k , T1:M = t1:M
]

: = Ef Xtk | Y1:k=y1:k ,T1:M=t1:M (· | y1:k ,t1:M)

[
h(Xtk )

]
=

∫
f Xtk | Y1:k ,T1:M (xtk | y1:k , t1:M)h(xtk ) dLXtk

(
xtk

)
,

(11)

can then be approximated by

Etk ,N
[
h

(
Xtk

) | Y1:k = y1:k , T1:M = t1:M
]

:=
∑N

i=1 wi
tk

h
(

xi
tk

)
∑N

i=1 wi
tk

(12)

where N is the number of particles. In fact, it can be shown
that as N approaches infinity, these empirical expectations
converge to the filter expectations:

lim
N→∞ Etk ,N

[
h(Xtk ) | Y1:k = y1:k , T1:M = t1:M

]
= E

[
h

(
Xtk

) | Y1:k = y1:k , T1:M = t1:M
]

.
(13)

Note that if we can sample from the Markov kernels
of Xtj , we can choose X̃tj = Xtj (at least in law), whence
	t0(xt0) ≡ 1 and 	tj | tj−1(xtj | xtj−1) ≡ 1. This is a standard
choice, but in terms of efficiency of the particle filter algo-
rithm not always the best one. On the other hand, finding
a suitable Markov chain X̃t0:M different from Xt0:M is not an
easy task.

Resampling
If the number N of samples through time is fixed, the sam-
ples obtained by sequential importance sampling quickly
degenerate since most of the normalized weights decrease
rapidly towards 0. The degree of degeneracy is often mea-
sured by an estimate of the so-called effective sample size
(ESS). This estimate at time t is given by

nESS := 1∑N
i=1

(
w̃i

t
)2 (14)

where

w̃i
t := wi

t∑N
ν=1 wν

t
(15)

are the normalized weights. It obtains its maximal value
N if all weights are equal, and it approaches 1 if the vari-
ance of the weights and thus the degree of degeneracy
increases. To avoid this degeneration of the samples, a
resampling step needs to be done when the ESS drops
below a threshold NThreshold (which is usually chosen to be
N/2).

Resampling at some time s� is based on given non-
negative (unnormalized) selection weights vi

s� for each
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particle index i: One repeatedly selects particles with
probabilities pi

� given by the normalized selection weights

pi
� := vi

s�∑N
ν=1 vν

s�
. (16)

This is multinomial resampling. There exist procedures
where each single particle is still selected with probability
pi

�, but with reduced overall variance, for instance strati-
fied resampling or systematic resampling which should be
preferred [24,25]. In any case, resampling defines a selec-
tion function ι� : I → I on the index set I : = {1, . . . , N}.
Resampling is then done by replacing the state samples(
xi

s�
)

i=1,...,N by the selected state samples
(

xι�(i)
s�

)
i=1,...,N

.
Since before selection the probability that the particle i
will be chosen is pi

� for each draw, the expected number
of times that particle i has been chosen after N draws is
Npι�(i)

� . To correct for the introduced bias, the normalized
weight w̃i

s� for each selected particle i needs then to be
corrected by replacing it by the weight

w̃ι�(i)
s�

Npι�(i)
�

/ N∑
ν=1

w̃ι�(ν)
s�

Npι�(ν)
�

= wι�(i)
s�

vι�(i)
s�

/ N∑
ν=1

wι�(ν)
s�

vι�(ν)
s�

(17)

(using (16)). The necessary correction is therefore
achieved if the unnormalized weights (wi

s� )i=1,...,N
are replaced by the corrected unnormalized weights
(wι�(i)

s� /vι�(i)
s� )i=1,...,N .

Note that in the original particle filter, the selection
weights vi

s� at time s� are chosen to be the particle weights
(before the replacement), i.e.

vi
s� = wi

s� for i = 1, . . . , N ,

such that after the resampling step the unnormalized
weights are all equal to 1. Nevertheless, in general their
choice is free and may be based on the observations
(which is used in the so-called auxiliary particle filter [26]).

Particle filter algorithm
The particle filter computes the state realizations and
weights recursively through time. In its standard form,
the particle filter can be stated as in algorithm 1. Note
that if one chooses X̃[t0,∞) = X[t0,∞) (in law), then
	tk | tk−1(xi

tk
| xi

tk−1
) ≡ 1 and the update of the weights

simplifies to

wi
tk

= gk
(

yk | xi
tk

, tk
)

wi
tk−1

.

Algorithm 1 Standard particle filter
1: {At time t0:}
2: Sample N state realizations

(
xi

t0

)
i=1,...,N of X̃t0 , with N large.

3: for i = 1, . . . , N do
4: Set the weight wi

t0 = 	t0

(
xi

t0

)
.

5: end for
6: for all times tk , k = 1, . . . , M do
7: {Resample the particle set

(
xi

tk−1

)
i=1,...,N

if necessary (e.g. if the ESS drops below a threshold):}
8: Generate a selection function ι according to some selection weights

(
vi

tk−1

)
i=1,...,N

.
9: for i = 1, . . . , N do

10: Replace the state sample xi
tk−1

by the selected state sample xι(i)
tk−1

.
11: Replace the unnormalized weight wi

tk−1
by the corrected weight wι(i)

tk−1
/vι(i)

tk−1
.

12: end for
13: for i = 1, . . . , N do
14: Sample a realization xi

tk
from the Markov kernel

K̃tk−1,tk

(
xi

tk−1
, ·

)
.

15: Update the weight

wi
tk

= 	tk | tk−1

(
xi

tk
| xi

tk−1

)
gk

(
yk | xi

tk
, tk

)
wi

tk−1
.

16: end for
17: For given suitable integrable functions h, compute estimates

Etk ,N [ h(Xtk ) | Y1:k = y1:k , T1:M = t1:M] :=
∑N

i=1 wi
tk

h(xi
tk
)∑N

i=1 wi
tk

.

18: end for
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Data Likelihood
Model validation or discrimination is generally based on
the data likelihood

Ztk (t1:M) : = f Y1:k | T1:M (y1:k | t1:M)

=
∫
Xt0:k

f Xt0:k ,Y1:k | T1:M
(
xt0:k , y1:k | t1:M

)
dLXt0:k

(
xt0:k

)
= E

[
f Xt0:k ,Y1:k | T1:M ( · , y1:k | t1:M)

]
(18)

for given observations y1:k . Without resampling, the data
likelihood could be approximated by the empirical mean
of the unnormalized weights, i.e. by

Ẑtk (t1:M) := 1
N

N∑
i=1

wi
tk

(19)

because this is the empirical estimate for the above expec-
tation. After a resampling step, this is not valid any longer.
Nevertheless, in any case, the data likelihood can be com-
puted recursively by the following estimate of the ratio
Ztk (t1:M)/Ztk−1(t1:M):

̂Ztk (t1:M)

Ztk−1(t1:M)
:=

∑N
i=1 	tk | tk−1

(
xi

tk
| xi

tk−1

)
gk

(
yk | xi

tk
, tk

)
wi

tk−1∑N
i=1 wi

tk−1

,

(20)

with initial estimate Ẑt0(t1:M) = 1 (see e.g. [27]).

MTU particle filter: Uncertain measurement times
We now assume that each observation time tj is a realiza-
tion of a random variable Tj. Its distribution is expressed
via densities γj with respect to the Lebesgue measure
λ[t0,∞). The observation times tj themselves are not
observed.

Full model
The full model in this case will include complete con-
tinuous state paths, since the observation times are now
distributed over the complete time axis [ t0, ∞), and the
observations may potentially depend on every state xtj
for tj ∈[ t0, ∞). Consider therefore the joint density of
the variables X[t0,∞), Y1:M and T1:M, with respect to the
product measure LX[t0,∞)

∏M
j=1 μYj

∏M
j=1 λ[t0,∞):

f X[t0,∞) ,Y1:M ,T1:M
(
x[t0,∞), y1:M , t1:M

) =
M∏

j=1
gj(yj | xtj , tj)

M∏
j=1

γj(tj).

(21)

Filter model
The filter at a given time t ≥ t0 is again based on a reduced
model. This model is given by the joint density of the
following variables: X[t0,t], denoting the state paths until
time t; further only those variables Yj for which Tj ≤ t;

and finally T1:M. This density is given with respect to the
product measure LX[t0,t]

∏M
j=1 μYj

∏M
j=1 λ[t0,∞) by:

f̂
X[t0,t] ,Y1:M ,T1:M

t (x[t0,t], y1:M , t1:M) =
M∏

j=1
tj≤t

gj(yj | xtj , tj)
M∏

j=1
γj(tj).

(22)

Note that we cannot use the simple notation of the stan-
dard case where for filtering only the first k observations
are taken into consideration at time tk , since neither the
observations are ordered in time nor the times tj are fixed
in advance. For this reason we have to include all mea-
surements Y1:M also into the filter model. Note that even
though we use the complete data Y1:M = y1:M in the nota-
tion, only those yj have to be known at time t for which
tj ≤ t holds. To avoid confusion, we mark all densities
connected to the filter model at time t by a hat superscript
(and by the index t).

We will now derive formulas for the filter density.
Since we assume that the observation times T1:M are not
observed, we use marginalization to get the joint density
for X[t0,t] and Y1:M only, which is

f̂
X[t0,t] ,Y1:M

t (x[t0,t], y1:M)

=
∫ ∞

t0
· · ·

∫ ∞

t0
f̂

X[t0,t],Y1:M ,T1:M
t (x[t0,t], y1:M , t1:M) dt1 · · · dtM

=
∫ ∞

t0
· · ·

∫ ∞

t0

M∏
j=1
tj≤t

gj(yj | xtj , tj)
M∏

j=1
γj(tj) dt1 · · · dtM

(23)

with respect to the product measure LX[t0,t]

∏M
j=1 μYj . We

will further simplify this density. If we define

ḡj,t
(
yj | xtj , tj

)
:=

{
gj(yj | xtj , tj) if tj ≤ t

1 otherwise,

then
M∏

j=1
tj≤t

gj
(
yj | xtj , tj

) =
M∏

j=1
ḡj,t

(
yj | xtj , tj

)

and further

f̂
X[t0,t] ,Y1:M

t (x[t0,t], y1:M)

=
∫ ∞

t0
· · ·

∫ ∞

t0

M∏
j=1
tj≤t

gj
(
yj | xtj , tj

) M∏
j=1

γj(tj) dt1 · · · dtM

=
∫ ∞

t0
· · ·

∫ ∞

t0

M∏
j=1

(
ḡj,t

(
yj | xtj , tj

)
γj(tj)

)
dt1 · · · dtM

=
M∏

j=1

∫ ∞

t0
ḡj,t(yj | xtj , tj)γj(tj) dtj,

(24)
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where the last step is possible because the factor indexed
by j does not depend on tj′ for j′ 
= j. For each j, we can
split the integration by tj at the time point t into two parts
and get∫ ∞

t0
ḡj,t

(
yj | xtj , tj

)
γj(tj)

=
∫ t

t0
gj

(
yj | xtj , tj

)
γj(tj) dtj +

∫ ∞

t
γj(tj) dtj

= 1 +
∫ t

t0

(
gj(yj | xtj , tj) − 1

)
γj(tj) dtj

where the last step follows from the fact that γj is a
probability density and therefore∫ t

t0
γj(tj) dtj +

∫ ∞

t
γj(tj) dtj =

∫ ∞

t0
γj(tj) dtj = 1

holds. Inserting this into (24), we get

f̂
X[t0,t],Y1:M

t
(
x[t0,t], y1:M

)
=

M∏
j=1

(
1 +

∫ t

t0

(
gj(yj | xtj , tj) − 1

)
γj(tj) dtj

)
.

With a further marginalization, we get the joint density of
Xt and Y1:M for the filter model,

f̂ Xt ,Y1:M
t (xt , y1:M)

:=
∫

{
x̃[t0,t]∈X[t0,t] : x̃t=xt

} f̂
X[t0,t] ,Y1:M

t (x̃[t0,t], y1:M) dLX[t0,t](x̃[t0,t])

=
∫

{
x̃[t0,t]∈X[t0,t] : x̃t=xt

}
M∏

j=1

(
1 +

∫ t

t0

(
gj(yj | x̃tj , tj) − 1

)
γj(tj) dtj

)
dLX[t0,t](x̃[t0,t])

(25)

which is with respect to the product measure
LXt

∏M
j=1 μYj . From this density, we finally can compute

the filter density with respect to LXt by applying Bayes’
theorem:

f̂ Xt | Y1:M
t (xt | y1:M) = f̂ Xt ,Y1:M

t (xt , y1:M)

f̂ Y1:M
t (y1:M)

(26)

where

f̂ Y1:M
t (y1:M) =

∫
Xt

f̂ Xt ,Y1:M
t (x̃t , y1:M) dLXt (x̃t) (27)

is the data likelihood with respect to the measure∏M
j=1 μYj .

Effective computation of the filter distributions
In the following paragraph, we will show how the densities
of the filter distributions given by (26) can be effectively
computed. This is the basis for the formulation of our
MTU particle filter method.

Let the observations y1:M ∈ Y1:M with f Y1:M (y1:M) > 0
be given. For each time t ∈ [ t0, ∞) and for each j ∈
{1, . . . , M}, we define random variables

Wj,t : � → R≥0 and Wt : � → R≥0

by the following system of ODEs

dW1,t(ω) = (
g1(y1 | Xt(ω), t) − 1

)
γ1(t) dt (28)

...
dWM,t(ω) = (

gM(yM | Xt(ω), t) − 1
)
γM(t) dt

for each ω ∈ � with initial values

W1,t0(ω) = · · · = WM,t0(ω) = 1, (29)

and by

Wt =
M∏

j=1
Wj,t . (30)

We will show that for each set A in the σ -algebra gener-
ated by the variable Xt , it holds that∫

Xt(A)

f̂ Xt | Y1:M
t (xt | y1:M) dLXt (xt) =

∫
A Wt(ω) dP(ω)∫
�

Wt(ω) dP(ω)
(31)

where f̂ Xt | Y1:M
t is the filter density. That means we can

use the processes Wj,t and Wt to compute the filter dis-
tributions through time. From this, it follows immediately
that we can also compute filter expectations. Indeed, for
any real-valued measurable function h on X such that
E[ |h(Xt)|] < ∞, it holds that the expectation of h(Xt)
given Y1:M = y1:M with respect to the filtered state Xt
defined by

Êt[ h(Xt) | Y1:M = y1:M] : = Ef̂ Xt | Y1:M
t (· | y1:M)

[ h(Xt)]

=
∫
Xt

f̂ Xt | Y1:M
t (xt | y1:M)h(xt) dLXt (xt),

(32)

is given by the following equation:

Êt
[
h(Xt) | Y1:M = y1:M

] =
∫
�

Wt(ω)h(Xt(ω)) dP(ω)∫
�

Wt(ω) dP(ω)
.

(33)

To show our assertion, we consider the processes Wj,t
for j = 1, . . . , M. According to (28) and (29), each Wj,t is
defined as

Wj,t = 1 +
∫ t

t0

(
gj(yj | Xtj , tj) − 1

)
γj(tj) dtj, (34)

so, with (30),

Wt =
M∏

j=1
Wj,t =

M∏
j=1

(
1 +

∫ t

t0

(
gj(yj | Xtj , tj) − 1

)
γj(tj) dtj

)

(35)
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holds. Thus, to prove (31), we have to show that for each
set A from the σ -algebra generated by Xt ,

∫
A Wt(ω) dP(ω)∫
�

Wt(ω) dP(ω)
=

(∫
Xt(A)

∫
{

x̃[t0,t]∈X[t0,t] : x̃t=xt
}

M∏
j=1

(
1+

∫ t

t0

(
gj(yj | x̃tj , tj)−1

)
γj(tj) dtj

)

× dLX[t0,t](x̃[t0,t]) dLXt (xt)

)/
f̂ Y1:M
t (y1:M)

holds (see (25) and (26)). It is enough to show the equality
for the numerator, i.e.∫

A
Wt(ω) dP(ω) =

∫
Xt(A)

∫
{

x̃[t0,t]∈X[t0,t] : x̃t=xt
}

M∏
j=1

(
1 +

∫ t

t0

(
gj(yj | x̃tj , tj) − 1

)
γj(tj) dtj

)

× dLX[t0,t](x̃[t0,t]) dLXt (xt)

since the equality of the denominator follows then imme-
diately from the special case A = � and from the fact
that

f̂ Y1:M
t (y1:M) =

∫
Xt

∫
{

x̃[t0,t]∈X[t0,t] : x̃t=xt
}

M∏
j=1

(
1 +

∫ t

t0

(
gj(yj | x̃tj , tj) − 1

)
γj(tj) dtj

)

× dLX[t0,t]

(
x̃[t0,t]

)
dLXt (xt).

Using the variable transformation (X[t0,t](ω), Xt(ω)) =
(x̃[t0,t], xt), we get

∫
A

Wt(ω) dP(ω)

=
∫

A

M∏
j=1

(
1 +

∫ t

t0

(
gj(yj | Xtj (ω), tj) − 1

)
γj(tj) dtj

)
dP(ω)

=
∫

Xt(A)

∫
{

x̃[t0,t]∈X[t0,t] : x̃t=xt
}

M∏
j=1

(
1 +

∫ t

t0

(
gj(yj | x̃tj , tj) − 1

)
γj(tj) dtj

)

× dLX[t0,t](x̃[t0,t]) dLXt (xt).

This is what we wanted to show.

Weights
Since for each t and for each j = 1, . . . , M the random
variables Wj,t and Wt depend only on the process X[t0,t]
until time t, we can define functions wj,t : X[t0,t](�) →

R≥0 and wt : X[t0,t](�) → R≥0 by setting for each x[t0,t] ∈
X[t0,t](�) ⊂ X[t0,t]:

wj,t(x[t0,t]) := Wj,t(ω) and wt(x[t0,t]) := Wt(ω)

for some ω ∈ � with X[t0,t](ω) = x[t0,t].

It follows from (34) that

wj,t(x[t0,t]) = 1 +
∫ t

t0

(
gj(yj | xtj , tj) − 1

)
γj(tj) dtj (36)

for each j and from (35) that

wt(x[t0,t]) =
M∏

j=1
wj,t(x[t0,t]). (37)

The values of wt will serve as weights in the MTU particle
filter. We will call wj,t the partial weights. Since in each dis-
cretization scheme which is applied to solve the integral in
the formula (36) for wj,t the integrand has to be evaluated,
we may run into practical problems if we use it as it is writ-
ten in the formula. If the density gj(yj | xtj , tj) evaluates to a
very small value and if we work with fixed-precision num-
bers, the subtraction of 1 will result in a value which may
be practically equal to −1. If this error accumulates over
time, we may end up with wrong values for wj,t(x[t0,t]). To
reduce the computational error, the integral could be split
up in the following way:

wj,t(x[t0,t]) = 1 −
∫ t

t0
γj(tj) dtj +

∫ t

t0
gj(yj | xtj , tj)γj(tj) dtj

= 1 − γ̄j,t + w̄j,t(x[t0,t]) (38)

where the cumulative distribution function

γ̄j,t :=
∫ t

t0
γj(tj) dtj (39)

is independent of x[t0,t] and where the part

w̄j,t(x[t0,t]) :=
∫ t

t0
gj(yj | xtj , tj)γj(tj) dtj (40)

depends on the path x[t0,t]. It is even more convenient to
compute γ̄j,t by evaluating the antiderivative of γj, if it is
computationally available.

Note that the definition of the filter distribution is
dependent on the reference measure μYj . A suitable
change of this measure may help to further increase the
efficiency of the algorithm. This issue still has to be
explored.

Resampling
Special attention is needed for the computation of the
weights after resampling steps have been applied. As men-
tioned earlier, resampling at time s� is done by randomly
generating a selection function ι� : I → I (with index
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set I = {1, . . . , N}) based on given non-negative (unnor-
malized) selection weights vi

s� for each particle index i.
The state samples

(
xi

s�
)

i=1,...,N have then to be replaced by

the selected state samples
(

xι�(i)
s�

)
i=1,...,N

, and the unnor-

malized weights
(
wi

s�
)

i=1,...,N by the corrected weights(
wι�(i)

s� /vι�(i)
s�

)
i=1,...,N

. We assume that resampling steps at
times s1, . . . , s� with t0 ≤ s1 < · · · < s� ≤ t have occurred,
states and weights have been replaced at these times,
and within this paragraph, we denote them by xs1,...,s�;i

t
and ws1,...,s�

t (xs1,...,s�;i
[t0:t] ), respectively, for each particle i. By

definition, we have at t = s�
xs1,...,s� ;i

s� = xs1,...,s�−1;ι�(i)
s� ,

and

ws1,...,s�
s�

(
xs1,...,s�;i

[t0:s�]

)
=

ws1,...,s�−1
s�

(
xs1,...,s�;i

[t0:s�]

)
vι�(i)

s�
.

For each time t ≥ s� and for each particle i, the corrected
weights are then recursively given by

ws1,...,s�
t

(
xs1,...,s� ;i

[t0:t]

)
=

ws1,...,s�−1
t

(
xs1,...,s� ;i

[t0:t]

)
vι�(i)

s�
=

wt
(

xs1,...,s� ;i
[t0:t]

)
∏�

λ=1 vιλ:�(i)
sλ

(41)

with

ιλ:�(i) = ιλ ◦ · · · ◦ ι�(i).

Since the process Wt computes the uncorrected weights
wt(xs1,...,s�;i

[t0:t] ), we have to correct the weights explicitly in
the algorithm by dividing them by the cumulative product

v̄s1,...,s� ;i
t :=

�∏
λ=1

vιλ:�(i)
sλ .

Note that we have to select these products during a resam-
pling step similarly to the selection of the states, i.e. at
t = s�,

v̄s1,...,s� ;i
s� = v̄s1,...,s�−1;ι�(i)

s� vι�(i)
s� .

The MTU particle filter algorithm
A practical MTU particle filter can be obtained by any
discretization scheme based on an (arbitrary) time dis-
cretization t0 = τ0 <τ1 < . . .< τD. Similar to the standard
particle filter, sampling need not necessarily be done from
the state process X[t0,∞) directly. One can instead sample
from another process X̃[t0,∞), provided that the Radon-
Nikodym derivatives

	t0(xt0) := dLXt0
(xt0)

dLX̃t0
(xt0)

and 	t | s(xt | xs) := Ks,t(xs, dxt)

K̃s,t(xs, dxt)

for each s, t ∈[ t0, t] with s < t exist and can be evaluated
pointwise. (In fact, it suffices that 	t | s(xt | xs) exists for all

states xs ∈ Xs which are reachable from some initial state
xt0 ∈ Xt0 with 	t0(xt0) 
= 0). In the special case that we
sample from the Markov kernels of X[t0,∞) directly, 	t | s ≡
1 for all s < t. Our MTU particle filter is described in
algorithm 2. Here we suppress the indices s1, . . . , s� in the
notations of states and weights (see last paragraph).

The algorithm as it is written here has to be enriched
with concrete discretization methods for the sampling
and update steps. For instance, if the process X̃[t0,∞) is a
multidimensional Itô process defined through a stochastic
differential equation (SDE)

dX̃t = a(X̃t , t) dt + B(X̃t , t) dWt

with drift a(x, t), diffusion matrix B(x, t), multidimen-
sional standard Wiener process Wt , and initial variable
X̃t0 , then the Euler-Maruyama method can be used for dis-
cretization. We set �τd : = τd−τd−1. The sampling is then
done by

xi
τd

= a
(

xi
τd−1

, τd−1
)

�τd + B
(

xi
τd−1

, τd−1
) √

�τd ηi

(42)

where ηi is a sample from a standard normal distribution
(with mean 0 and variance 1). Further, the update step can
be done in the simplest case using Euler discretization:

γ̄j,τd = γ̄j,τd−1 + γj(τd−1)�τd (43)

and

w̄i
j,τd

= w̄i
j,τd−1

+ gj(yj | xi
τd−1

, τd−1)γj(τd−1)�τd. (44)

Of course, better discretization schemes are possible. As
we have already mentioned, if the antiderivative Gj with
Gj(t0) = 0 (which is in fact the distribution function) of γj
is available, then one should rather use

γ̄j,τd = Gj(τd)

for the computation of the values γ̄j,τd .

Adaptive stepsize
To be able to fully exploit our MTU particle filter method,
the discretization stepsize must be chosen appropriately.
One simple possibility is to use a very small stepsize
throughout the complete procedure. A quite high compu-
tation time will result from that. This can be reduced if
an adaptive stepsize is chosen. We propose to determine
the stepsize �τd online depending on the ESS estimate.
The stepsize should decrease when the ESS drops rapidly,
and it should increase again if the ESS estimate changes
only marginally. In detail, the following procedure can be
applied.

In each step of the algorithm, we obtain an initial guess
of the stepsize by a linear interpolation between a maximal
stepsize if the ESS had not changed since the last step, and
a minimal stepsize if the ESS had dropped by the number
N of samples (actually, the maximal difference that can be
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Algorithm 2 MTU particle filter
1: {At time τ0 = t0:}
2: Sample N state realizations xi

τ0 , i = 1, . . . , N , of X̃τ0 , with N large.
3: for j = 1, . . . , M do
4: Set γ̄j,τ0 = 0.
5: end for
6: for i = 1, . . . , N do
7: Set the weight wi

τ0 = 	t0(xi
τ0).

8: for j = 1, . . . , M do
9: Set w̄i

j,τ0
= 0.

10: end for
11: Set the cumulative product v̄i of the selection weights to 1.
12: end for
13: for all times τd, d = 1, . . . , D: do
14: {Resample the particle set (xi

τd−1
)i=1,...,N if necessary (e.g. if the ESS drops below a threshold):}

15: Generate a selection function ι according to some selection weights vi
τd−1

.
16: for i = 1, . . . , N do
17: Replace the state sample xi

τd−1
by the selected state samples xι(i)

τd−1 .
18: for j = 1, . . . , M do
19: Replace the partial weight w̄i

j,τd−1
by the selected partial weight w̄ι(i)

j,τd−1
.

20: end for
21: Replace the cumulative product of the selection weights v̄i by v̄ι(i)vι(i)

τd−1 .
22: end for
23: for i = 1, . . . , N do
24: Sample (at least approximately) a realization xi

τd
from the Markov kernel

K̃τd−1,τd (x
i
τd−1

, ·).
25: for j = 1, . . . , M do
26: Compute (at least approximately)

γ̄j,τd = γ̄j,τd−1 +
∫ τd

τd−1

γj(t) dt or (if available) γ̄j,τd =
∫ τd

t0
γj(t) dt

27: and

w̄i
j,τd

= w̄i
j,τd−1

+
∫ τd

τd−1

gj(yj | xi
t , t)γj(t) dt.

28: end for
29: Set the total unnormalized weight to

wi
τd

=
	τd | τd−1

(
xi
τd

| xi
τd−1

)
v̄i

M∏
j=1

(
1 − γ̄j,τd + w̄i

j,τd

)
.

30: end for
31: For given functions h, compute approximations to the expectations of the filtered process:

Êτd [ h(Xτd ) | Y1:M = y1:M] ≈
∑N

i=1 wi
τd

h(xi
τd

)∑N
i=1 wi

τd

.

32: end for
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obtained is N −1). From this initial guess, we compute the
increments of the partial weights, and from them we pre-
dict the ESS in the next step based on the current stepsize
guess. If the difference between this predicted ESS and the
current ESS drops by more than a certain relative amount
(we use 10%), then a new guess of the stepsize is com-
puted by dividing the current guess by 2. With this new
guess, a new predicted ESS is computed, and the test can
be applied again. This procedure will be applied iteratively
until either the difference between predicted and current
ESS drops by less than the prescribed amount, or the
stepsize guess falls below a prescribed minimal stepsize.
The current stepsize or the minimal stepsize, respectively,
is then accepted, and the algorithm proceeds with this
stepsize. See algorithm 3 for a formal description of the
stepsize determination.

If we sample from the Markov kernels of X[t0,∞) directly,
then 	τ∗

d | τd−1

(
xi
τ∗

d
| xi

τd−1

)
≡ 1 and the update of the

weights does not depend on the new states xi
τ∗

d
. Hence we

only need to compute the weight update and the corre-
sponding ESS estimate until we find an adequate stepsize.
In this case, it is not necessary to sample the new states in
each iteration which renders the algorithm computation-
ally more effective.

Note that this procedure cannot be performed when the
measurement times are fixed (i.e. in the standard parti-
cle filter). In this case the ESS does not depend on the
stepsize, and a reduction of it will not improve the ESS.
The application of the MTU particle filter with distributed
measurement times is essential to be able to use this
adaptive stepsize procedure.

Data Likelihood
As mentioned earlier for the standard case of the particle
filter algorithm, without resampling, the data likelihood
could be approximated by the empirical mean of the
unnormalized weights (see (19)). In our case, this would
be

Ẑt := 1
N

N∑
i=1

wi
t = 1

N

N∑
i=1

wt(xi
t).

After each resampling step, we have to correct this for-
mula. Using the same notation as in the paragraph on
resampling, for each time t ≥ s� and for each particle i,
the corrected estimate is given by

Ẑt : = 1
N�+1

(
�∏

λ=1

N∑
i=1

vi
sλ

) N∑
i=1

ws1,...,s�
t

(
xs1,...,s� ;i

[t0:t]

)

= 1
N�+1

(
�∏

λ=1

N∑
i=1

vi
sλ

) N∑
i=1

wt
(

xs1,...,s� ;i
[t0:t]

)
∏�

λ=1 vιλ:�(i)
sλ

(45)

Algorithm 3 Determination of the adaptive stepsize
1: Compute an initial guess of the stepsize:

�τ ∗
d = �τmax −(�τmax −�τmin) · |nESS,τd−2 − nESS,τd−1 |

N
.

2: Set τ ∗
d = τd−1 + �τ ∗

d .
3: loop
4: for i = 1, . . . , N do
5: Sample (at least approximately) a realization xi

τ∗
d

from the Markov kernel

K̃τd−1,τ∗
d

(
xi
τd−1

, ·
)

.

6: for j = 1, . . . , M do
7: Update the weights:

γ̄j,τ∗
d

= γ̄j,τd−1 + γj(τd−1)�τ ∗
d

and

w̄i
j,τ∗

d
= w̄i

j,τd−1
+ gj

(
yj | xi

τd−1
, τd−1

)
γj(τd−1)�τ ∗

d .

8: end for
9: Set the total unnormalized weights to

wi
τ∗

d
=

	τ∗
d | τd−1

(
xi
τ∗

d
| xi

τd−1

)
v̄i

M∏
j=1

(
1 − γ̄j,τ∗

d
+ w̄i

j,τ∗
d

)
.

10: end for
11: Compute the tentative ESS estimate:

nESS,τ∗
d

= 1∑N
i=1(w̃i

τ∗
d
)2

where

w̃i
τ∗

d
=

wi
τ∗

d∑N
i=1 wi

τ∗
d

are the normalized weights.

12: if
|nESS,τd−1 −nESS,τ∗

d
|

nESS,τd−1
> 0.1 and �τ ∗

d > �τmin then

13: Set �τ ∗
d to max

(
�τ∗

d
2 , �τmin

)
and repeat the loop.

14: else
15: Set �τd = �τ ∗

d and τd = τ ∗
d and break.

16: end if
17: end loop

with

ιλ:�(i) = ιλ ◦ · · · ◦ ι�(i)

(see (41)). This can be seen by considering recursively the
correction at the time of the resampling step �. Since

Nvι�(i)
s�∑N

ν=1 vν
s�

is the expected number of times the particle i has been
selected after N draws, we have to correct the weights
ws1,...,s�−1

s�

(
xs1,...,s�;i

[t0:s�]

)
in selection step � by dividing them by
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this number. The following computation then proves the
correctness of the formula via induction:

Ẑs� = 1
N�

(
�−1∏
λ=1

N∑
i=1

vi
sλ

)

×
N∑

i=1

(
ws1,...,s�−1

s�

(
xs1,...,s� ;i

[t0:s�]

) /
Nvι�(i)

s�∑N
ν=1 vν

s�

)

= 1
N�+1

(
�∏

λ=1

N∑
i=1

vi
sλ

) N∑
i=1

ws1,...,s�−1
s�

(
xs1,...,s�;i

[t0:s�]

)
vι�(i)

s�

= 1
N�+1

(
�∏

λ=1

N∑
i=1

vi
sλ

) N∑
i=1

ws1,...,s�
s�

(
xs1,...,s�;i

[t0:s�]

)
.

We get algorithm 4 for the computation of the empirical
estimate of the data likelihood, which needs to be done in
parallel to the MTU particle filter algorithm.

Offline and online estimation
Two main cases of estimation procedures may be distin-
guished: the offline estimation procedure used for exam-
ple for parameter estimation, and the online estimation
procedure for control purposes. While in the offline case
the measurements are completely available before estima-
tion begins, we know only some of the measurement val-
ues at some certain time t during the online procedure. In
this latter case, an online computation where all measure-
ment times have been modelled with probability densities
with infinite support is impossible, because in this situ-
ation all measurement values must already be known at
time t0. Online estimation is nevertheless possible if the

Algorithm 4 Estimation of the data likelihood
1: At time τ0 = t0:
2: Set the correction factor for the data likelihood to Z̄τ0 : =

1/N .
3: for all times τd , d = 1, . . . , D do
4: if the particle set has been resampled then
5: Set the correction factor for the data likelihood to

Z̄τd := Z̄τd−1
1
N

N∑
i=1

vι(i)
τd−1

.

6: else
7: Set

Z̄τd := Z̄τd−1 .

8: end if
9: Compute the empirical estimate for the data likelihood

at time τd by

Ẑτd := Z̄τd

N∑
i=1

wi
τd

.

10: end for

support of the measurement time densities is finite. The
online estimation must then be delayed by the diameter of
the respective supports.

Implementation
We have implemented the proposed algorithm in Math-
ematica as part of a Parameter Estimation Toolbox for
Systems Biology developed by the Systems Biology group
at the Fraunhofer Chalmers Centre (FCC) in Göteborg
(Sweden). Furthermore, we have implemented it also in
the statistical computing language R [28]. All figures in
this article have been created using this R implementation.

Results and Discussion
Motivating example - results
In this section, we resume our motivating example and use
it in a parameter estimation setting to compare our MTU
filter to both the standard particle filter and to a state-of-
the-art Maximum Likelihood (ML) method which is not
based on Monte Carlo techniques. To this aim, we first
create virtual “measurements” at four intended measure-
ment times t̂j, j = 1, . . . , 4 by simulation runs with our true
model (see Table 1). This is done as follows: We simulate a
single state path (q(t))t∈[0,10] based on the “true” parame-
ter values α = 1 and β = 3. Then, for each intended mea-
surement time t̂j, we sample an actual measurement time
tj according to the density γj. Now, for each tj, we sample a
measurement value yj from the distribution N (q(tj), σ 2

y ).
Figure 2 shows one set of measurement values obtained in
this way. The intended measurement times are 0.5, 1, 2, 4
and the measurement values we got from one simula-
tion run are 1.083346, 2.550290, 2.700863, 2.949450. We
will use these values in the following estimation runs. Our
aim is to estimate the parameter vector θ = (α, β) with
the following three differrent estimation procedures and
compare the results:

1. ML estimation on “lumped” measurements,
2. Standard PF on “lumped” measurements, and
3. MTU-PF.

Note that in both the standard PF and the ML estimation
method, it is not possible to include the uncertainties in
the measurement times directly. Rather, we have to lump
these uncertainties with the uncertainties in the measure-
ment values by increasing their variances σ 2

y and to treat
the t̂j like true measurement times. In both cases, we
tested several values of “lumped” variances σ 2

y .
We have implemented the standard particle filter and

the MTU particle filter in the statistical computing lan-
guage R [28]. The ML estimations have been done using
the Parameter Estimation Toolbox for Systems Biology
developed by the Systems Biology group at the Fraunhofer
Chalmers Centre (FCC) in Göteborg (Sweden).
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Figure 2 Measurement distribution with a set of possible
measurements. The dashed dark-green line depicts the nominal
evolution of the state q over time. The green shaded area depicts the
region where the measurements are expected. The yellow circles
depict a set of possible measurement values.

ML estimation
The ML estimation is a standard method based on a Max-
imum Likelihood approach, that is, on the maximization
of the likelihood function L(θ ; y1:M) with respect to the
parameter vector θ . The computation of the likelihood
requires the use of estimates of the state mean and covari-
ance matrix which are routinely obtained by the use of a
non-linear derivation of the Kalman filter.

Given measurements y1:M at a total of M time points tj
which are assumed to be fixed and known, the likelihood
function can be written as

L(θ ; y1:M) : = f Y1:M ,T1:M ,θ (y1:M; θ)

=
M∏

j=1
f Yj|Y1:j−1,T1:M ,θ (yj|y1:j−1, t1:M; θ)

(46)

where f Yj|Y1:j−1,T1:M ,θ is the conditional probability den-
sity function of the j-th observation yj given all previous
observations y1:j−1 as given in (9), here explicitly based on
the given parameter vector θ . As already mentioned, ana-
lytical solutions are not generally available. An exception
to this is the case that all measurements are condition-
ally Gaussian, that means that all conditional densities
f Yj|Y1:j−1,T1:M ,θ are Gaussian. In this case, the Kalman filter
yields the correct solution. The assumption that the mea-
surements are conditionally Gaussian is commonly used
as an approximation even in those cases where this is not

true. If one accepts that this assumption gives an approx-
imation which is close enough to the true model, then
it is only necessary to propagate the means and covari-
ances of the measurements, since the Gaussian probability
distribution is completely characterized by the first two
moments. We introduce the notation

ŷj|j−1 = E[ yj|y1:j−1; θ ]

and

Rj|j−1 = Cov[ yj|y1:j−1; θ ]

for the prediction of the mean and covariance of the
observation variables, respectively. The computation of
these values can be achieved by some derivates of the
Kalman filter, commonly used are the Extended Kalman
Filter (EKF) or the Unscented Kalman Filter (UKF), more
exactly those versions of these filters which are time-
continuous in the states and time-discrete in the measure-
ments (continuous/discrete EKF and UKF, respectively).
The residuals εj are then defined by the differences
between the measurements yj and their estimations ŷj|j−1:

εj := yj − ŷj|j−1.

The assumption of normally distributed observations
leads to an approximation of the likelihood function of
the following form

L(θ ; y1:M) ≈ L̂(θ ; y1:M) :=
M∏

j=1

exp
(
− 1

2εT
j R−1

j|j−1εj
)

√|Rj|j−1|
(√

2π
)l

where l is the number (dimension) of the observation
variables. The negative logarithm of this approximated
likelihood function is

− log L̂(θ ; y1:M) = 1
2

M∑
j=1

(
log(det(Rj|j−1)) + εT

j R−1
j|j−1εj

)

+ Ml
2

log(2π).

The problem to finding maximum likelihood estimates
of the model parameters takes the form of a nonlinear
optimization problem:

θ̂ = arg min
θ∈�

{− log L̂(θ ; y1:M)}.

Roughly, the estimation with this approach is done as
follows:

1. Choose an initial guess θ∗ for the parameter vector θ .
2. Based on the current parameter vector θ∗ and for

each (intended) measurement time tj, compute
residuals εj and estimates of the covariance matrices
Rj|j−1 using (an approximation to) the Kalman filter.

3. Compute the likelihood L based on the state
estimates εj and Rj|j−1.
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Figure 3 Parameters α and β estimated by ML estimator. Box plots of estimated parameters of 100 runs each. The medians are depicted with
circles. The bottom and top of the box are the 0.25-quantile and the 0.75-quantile, i.e. 50% of the values lie within the box. The whiskers mark the
0.025-quantile and the 0.975-quantile, i.e. 95% of the values lie between the whiskers. The horizontal red lines denote the true parameter values.

4. Use one step of some local optimization technique to
find an improved parameter vector θ∗

new that
decreases the negative log-likelihood function;
replace θ∗ by this improved parameter vector θ∗

new.
5. Repeat steps 2 to 4 until the parameter vector shows

convergence.

The results of several runs of parameter estimations for
different values of the lumped measurement variances σ 2

y
are shown in Figure 3. For each σ 2

y , we performed 100
runs with different initial state and parameter values. Note
that the choice of an initial parameter value is mandatory
for all approaches based on a local optimization method,
and that different choices may lead to different results. On
the other hand, in our example, we assume a log-normal
prior distribution for the initial states (see Table 1), while
the Kalman filter based approximations always assume
normally distributed initial state values. Conditioned on
the intial state (and current parameter), our example sys-
tem is Gaussian linear which means that the Kalman filter
yields exact estimates. We therefore decided the use the
following procedure: Before each run, we sample the start-
ing values for the parameters from the same priors as are
available to the particle filter (see Table 2), and we also
sample initial values q0 for the states from the correct dis-
tributions (see Table 1). Then we start the estimation pro-
cedure based on these initial parameter and state samples,
and we keep the resulting estimated parameters as one
“sample”. We repeat this procedure for all of the 100 runs.
In this way, the standard procedure uses exact the same
information as the particle filters, with the only exception
of the measurement time distributions γj. Figure 3 shows
the distributions of the estimated parameter values as box
plots.

The estimated parameters of all estimation runs are far
away from the true values; even quite large variances σ 2

y do
not improve the performance of the estimations. (We also
tested the ML approach on a different data set of 4 mea-
surements which was created without randomness in the

measurement times: the ML approach performed much
better in this case since the estimated parameters varied
around the true values; data not shown).

Estimation with particle filters
Tests with the particle filters (both standard and MTU)
have been performed in the following way: First we per-
form an estimation run where we use these measurements
to estimate the parameters α and β of the system equation
dq(t) = (−αq(t) + β) dt + σ dWt . We perform this esti-
mation with the MTU particle filter and with the standard
particle filter under the same conditions and with the
same seed for the random number generator. Thus the ini-
tial distribution of the particles is the same in both cases.
For the standard filter, we use different levels of variance
σ 2

y for the measurement noise. Afterwards, the empiri-
cal medians of the final parameter distributions are used
to perform a simulation run in each case, where we esti-
mate the state q of the system based on the measurements
and these fixed parameters. For both runs, we compute an
estimate of the data likelihood over time. The choices of
stepsizes and artificial parameter dynamics can be found
in Table 2 (the values for the artificial parameter dynam-
ics are computed by interpolation in the same way as we
will describe later in the application of the MTU-PF to the
plasma-leucine model).

Table 3 shows a comparison of the estimated parameters
and data log-likelihood values. The estimated parameters

Table 2 Choices for the PFs for the motivating example

prior for estimation of α log-N (log(2), 12)

prior for estimation of β log-N (log(6), 12)

stepsize for standard particle filter 10−2

maximal stepsize for MTU particle filter 10−2

minimal stepsize for MTU particle filter 10−6

diffusion parameter for artificial parameter
noise at time t

5.43/(t + 3.29)2
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Table 3 Estimated parameters and data log-likelihood values for the MTU particle filter and the standard particle filter
with different standard deviations σy for the measurement noise

Data log-likelihood Data log-likelihood

σy α β Estimation run Simulation run

MTU 0.005 1.012 3.010 -4.327 2.398

standard 0.005 7.031 20.712 -24.084 -744.970

standard 0.01 9.102 26.919 -23.936 -890.746

standard 0.1 4.709 13.847 -9.081 -140.117

standard 0.25 1.425 4.171 -6.714 -4.618

standard 0.5 1.156 3.287 -5.538 -2.170

standard 0.75 1.318 3.604 -5.807 -3.160

standard 1 1.450 3.733 -6.227 -4.100

The true parameters are α = 1 and β = 3.

(empirical medians) of the MTU particle filter (α = 1.012
and β = 3.010) are very close to the true values (α = 1 and
β = 3) whereas the estimated values of the standard parti-
cle filter are significantly worse. The data log-likelihood in
both estimation and simulation run is considerably higher
for the MTU filter, compared to any of the standard filter
runs.

In Figure 4, we show the distributions of the filtered
states obtained by simulation runs with the estimated
parameters. The violet shaded area in Figure 4(a) depicts
the estimated state distributions of the state q for the
MTU particle filter with the light-blue line marking its
median. The dashed dark-green line depicts the nominal
evolution of the state q over time which should be approxi-
mated by the filter. Figures 4(b-d) show the estimated state
distributions of the state q for the standard particle filter
with different assumed lumped measurement variances.
As can be seen from these figures, the approximation by
the MTU particle filter is very close to the evolution of
the state with the true parameters. On the contrary, how-
ever we choose the measurement variance in the standard
case, the algorithm is not able to adequately approximate
the correct state evolution.

Figure 5 displays the simulated measurement distri-
butions corresponding to the filtered state distributions
based on the simulation runs with estimated parameters.
Here we notice again that the MTU particle filter can
adapt well to the situation, whereas the measurement dis-
tributions which can be realized by the standard filter do
not fit well with the data points.

In addition to the significant improvement in the
parameter and state estimation, the MTU particle filter
has another benefit. Figure 6 shows the development of
the effective sample size estimate during the estimation
runs. In the standard particle filter runs where the lumped
measurement variance is assumed to be small, the pre-
dicted values for states and parameters do not fit well with

the measurements. At the measurement times, when the
predicted states are compared with the measurements and
weighted accordingly, most weights decrease rapidly. This
leads to a high variance of the weights and the effective
sample size estimate drops severely, indicating that only
very few particles effectively contribute to the estimation.
This degeneration of the particle cloud is prevented by the
MTU particle filter, as can be seen in Figure 6(a). For the
standard filter runs where σ 2

y is assumed to be larger, the
ESS estimate does not drop as severely as with a small σ 2

y .
This is due to the fact that, with a measurement variance
which is assumed to be very high, more or less all pos-
sible simulated measurements are considered to fit well
with the true measurements. However, these filters are not
able to establish reasonably good estimates of the states
and parameters and are clearly outperformed by the MTU
particle filter.

Application to the Plasma-Leucine Model with Population
Data
In this section, we apply our MTU particle filter algorithm
to a leucine kinetics model (Demant et al. [29] based on
Cobelli et al. [30]) with data taken from a clinical study on
diabetes patients ([31,32], see Additional file 1). We per-
form Bayesian population-based (i.e. NLME) parameter
estimation with this model. The model and the data have
been previously used in a maximum likelihood estimation
context in [17]. It should be noted that the original ODE
model needs to be extended by some kind of stochas-
tic process variability in order to turn it into an SDE
model. The approach taken in [17] is different from our
approach in the way that in [17] the stochastic fluctuations
are assumed to be in the tracee (plasma leucine) while we
here assume the variability to be in the tracer (labelled
leucine). Both assumptions are plausible; a final decision
on the best way to model the process dynamics has not yet
been made.
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Figure 4 Filtered state distributions based on simulation runs with estimated parameters for the motivating example. MTU particle filter
(a) and standard particle filter with several different assumed lumped measurement variances σy (b-d). Violet shaded area: Filtered state distributions
based on empirical quantiles. Solid blue line: Median of filtered states. Dashed dark-green line: nominal evolution of the state q over time.

The Leucine model
In [31] (see also the thesis [33]), a new combined
multicompartmental model for apolipoprotein B-100
(apoB) and triglyceride metabolism in very low den-
sity lipoprotein (VLDL) subfractions has been developed,
see Figure 7. VLDL are transporters of triglycerides and
cholesterol from the liver to the periphery, and elevated
levels are associated with increased risk for cardiovas-
cular events. Each VLDL particle has exactly one apoB
molecule attached which makes apoB a suitable marker
for triglyceride transport.

The secreted particles become denser and denser as
triglycerides are delivered to target organs such as mus-
cles and adipose tissue and the relative protein content is
increased. As the density increases, the VLDL becomes an
intermediate density lipoprotein (IDL) and finally a low
density lipoprotein (LDL).

For our purposes we use only the part of the model con-
cerning the leucine pool (compartments 1-4), see Figure 8.
This subsystem was first used for apoB kinetic studies by
Demant et al. [29] as an implementation of the work by
Cobelli et al. [30]. The output is at compartment 1 and
at compartment 2. The influx into compartment 1 will be
denoted U1.

The data are obtained from tracer/tracee experiments.
Here the tracee (i.e. the concentration we are actually
interested in) is the leucine amino acids in the apoB
molecules. Additional labelled leucine (tracer) is injected
as a bolus infusion. Knowledge about the kinetics (fluxes
between compartments) of the tracee can be gained by
studying the kinetics of the tracer. In the restricted model
four compartments are considered: plasma leucine (1),
intra-hepatic leucine (2), and two plasma protein pools
(3 and 4). In the full model, additional compartments
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Figure 5 Simulated measurements corresponding to the filtered state distributions for the motivating example. MTU particle filter (a) and
standard particle filter with several different assumed lumped measurement variances σ 2

y (b-d). Violet shaded area: Measurement distributions
based on empirical quantiles. Solid blue line: Median of simulated measurements. Yellow circles: Measurements.

represent VLDL subfractions (compartments 5-11 in
Figure 7). The four-compartment system is linked to com-
partments 5-11 through compartment 2.

For each compartment i where i = 1, . . . , 4, let Qi and qi
denote the mass of the tracee and the tracer, respectively.
Similarly, let Ui and ui denote the input for the tracee and
the tracer, respectively. For tracer/tracee experiments, Qi
is assumed to be in steady state. If the concentration level
of the labelled injection is small compared with the over-
all concentration levels, and if the model is linear, then
approximately

dq(t)
dt

= K(t)q(t) + u(t)

where q(t) = (qi(t))T
i=1,2,3,4, u(t) = (u1(t), 0, 0, 0)T and

K(t) = (kj,i)j,i=1,2,3,4

where kj,i for i 
= j is the transfer coefficient of the tracers
from compartment i to compartment j (compartments 0
and 11 are considered to be output compartments), and
for each i = 1, . . . , 4

ki,i := −
∑

j=0,1,2,3,4,11
j 
=i

kj,i.

Throughout this paper, the time unit used is hours, all
fractional transfer coefficients are given in the unit h−1,
and the amount of material in compartments is given in
mg. In our model, only k0,1, k1,2, k1,3, k2,1, k3,1, k3,4, k4,3
and k11,2 are assumed to be non-zero, while additionally
the following dependencies of the transfer coefficients are
assumed to be valid:

k1,2 = k2,1

k3,4 = 0.1 · k4,3
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Figure 6 Estimated effectice sample size during estimation run. MTU particle filter (a) and standard particle filter with several different assumed
lumped measurement variances σy (b-d). The dotted blue line denotes the resampling threshold.

The fractional transfer coefficient k11,2 has to be fixed
for the system to be identifiable. We set k11,2 =
0.01h−1, as an estimated average from current results.
We build stochastic differential equations (SDEs) from
the resulting ordinary differential equations by adding
noise terms which are given by standard Wiener pro-
cesses W1,t , . . . ,W4,t multiplied by diffusion parameters
σ1, . . . , σ4, respectively. The leucine pool subsystem which
we consider here (compartments 1-4) interacts with the
surroundings only via an initial input into compartment 1
at time t = 0, an output from compartment 1, and another
output from compartment 2 (towards compartment 11).
All other flows are processes acting inside the subsystem
and hence should follow the principle of mass conserva-
tion. Therefore we add the stochastic terms to the ODE
system in the following way:

dq1(t) = − (k1,2 + k0,1 + k3,1) (q1(t) dt + σ1 dW1(t))
+ k1,2 (q2(t) dt + σ2 dW2(t))
+ k1,3 (q3(t) dt + σ3 dW3(t)),

dq2(t) = − (k11,2 + k1,2) (q2(t) dt + σ2 dW2(t))
+ k1,2 (q1(t) dt + σ1 dW1(t)),

dq3(t) = − (k1,3 + k4,3) (q3(t) dt + σ3 dW3(t))
+ 0.1k4,3 (q4(t) dt + σ4 dW4(t))

+ k3,1 (q1(t) dt + σ1 dW1(t)),
dq4(t) = − 0.1k4,3 (q4(t) dt + σ4 dW4(t))

+ k4,3 (q3(t) dt + σ3 dW3(t)).

We fix the diffusion parameters to be σ1 = σ2 = σ3 =
σ4 = 3. Initial conditions are given by

q1(0) = q2(0) = q3(0) = q4(0) = 0.

The patients get a bolus injection and therefore the input
u1(t) will be modelled as a delta distribution at time t =
0h,

u1(t) = u1,0δ(t).

Practically, this means that only the initial condition q1 is
affected by it, and we can replace the initial condition for
q1 by

q1(0) = u1,0,

and set u1(t) = 0 in the differential equations.
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Figure 7 Multicompartmental model for apolipoprotein B-100 (apoB) and triglyceride (TG) metabolism in very low density lipoprotein
(VLDL) subfractions. This multicompartmental model was developed in [31]. Circles depict compartments and arrows depict fluxes between
compartments. The model includes separate modules for leucine (yellow) and glycerol (red). The free leucine plasma kinetics is modeled by two
pools (3 and 4) and a plasma compartment (1), which interchange materials with an intrahepatic compartment (2). Compartment 2 feeds the apoB
synthetic machinery. For glycerol, the plasma compartment (13) is connected to a pooling compartment (12) and feeds TG synthesis, which consists
of a fast pathway (14) and a slow pathway (21). The assembly of lipoprotein is modeled by separate delays for apoB (11) and TG (22). The plasma
kinetics of apoB and TG is modeled by a four-compartment hydrolysis chain, consisting of compartments 5, 6, 8, and 10 for apoB and compartments
15, 16, 18, and 20 for TG. Compartments 5/15 and 6/16 are associated with VLDL1, together with a slowly decaying compartment 7/17.
Compartments 8/18 and 10/20 together with the slowly decaying compartment 9/19 form the VLDL2 module. Lipolysis of TG is modeled to take
place in the transfer between two compartments. For details on the full model, see [31,34], or [33]. For our purposes, we use a restricted model
consisting of the leucine pool, e.g. compartments 1 to 4, see also Figure 8.

The same differential equations, without noise terms,
are assumed to be valid for the states Qi and the input U1
of the tracee:

dQ(t)
dt

= K(t)Q(t) + U(t)

where Q(t) = (Qi(t))T
i=1,2,3,4, U(t) = (U1(t), 0, 0, 0)T. It

is assumed that the tracee input U1(t) = U1 is constant

Figure 8 Schematic depiction of the restricted model (leucine
pool) [33]. This scheme is a subscheme of Figure 7. Circles depict
compartments. Arrows depict fluxes between compartments and are
labelled with the corresponding fractional transfer coefficients.
Compartment 1 is the plasma-leucine compartment where the
leucine is injected. Compartment 2 is an intrahepatic compartment
which is the source for apoB synthesis. Compartments 3 and 4 are
body protein pools. The output is at compartment 1. Compartment
11 is a delay compartment used only as output from compartment 2.

but unknown. We will therefore estimate it together with
the transfer parameters. Since for the tracee steady state is
assumed (i.e. dQi(t)/ dt = 0), it is possible to solve those
equations for Q1(t), and we get:

Q1(t) = (k11,2 + k1,2)U1
k0,1(k11,2 + k1,2) + k11,2k1,2

.

The output is a measurement proportional to the ratio
between the tracer and the tracee, disturbed by log-
normal noise:

y1(t) = p1
q1(t)
Q1(t)

ξt , ξt ∼ Log- N
(

0, σ 2
y1

)
independently

for each t,

where we assume the value of the variance parameter to
be σ 2

y1 = 0.52 (this is the variance of log ξt). The parame-
ter p1 denotes the unknown proportion of plasma leucine
that actually is in the plasma. The parameters p1 and U1
are not jointly identifiable, therefore we fix p1 = 0.65.
More details concerning the deterministic model (without
noise terms) can be found in [31] and [33]. Note that the
stochastic disturbances are not part of the original model,
they are rather augmentations of the model used in this
article.

The mixed effects model
The model as presented in the last paragraph contains
only flux parameters kj,i which are assumed to be the
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same for every individual. Neither does it account for indi-
vidual differences between several persons, nor does it
account for possible changes of the flux parameters when
the persons under consideration are affected by a disease
or a treatment. To be able to treat these differences in an
appropriate way, we introduce group and patient specific
parameters in the model; namely the transfer coefficient
k0,1 will be split into a group dependent and a patient
dependent part. In this way, we introduce so-called mixed
effects into the model. Mixed effects generally increase the
difficulty in inference making. In the following test runs,
we will use measurement data previously reported as indi-
vidual data for a total of 34 subjects [31,32]. Among them,
15 patients belonged to the diabetes group, and 19 to
the control group. From experiments, it can be observed
that the degradation rate k0,1 of plasma leucine is signifi-
cantly different for people with and without diabetes. We
therefore assume that the expected value of k0,1 in each
group differs and may be either kd

0,1 or kc
0,1 corresponding

to the diabetes group and the control group, respectively.
Additionally, we assume that we have patient-dependent
random factors ζp modelling the parametric uncertainties
among individuals, such that finally

k(p)

0,1 =
{

ζpkd
0,1 if the patient p is in the diabetes group,

ζpkc
0,1 if the patient p is in the control group

where all ζp’s are static and independently log-normally
distributed:

ζp = exp(ηp) with ηp ∼ N
(

0, σ 2
ηp

)
independently for each p

for p = 1, . . . , 34. As a consequence, each of the states
q1, . . . , q4 has to be considered separately for each
patient p. We indicate this by writing q(p)

1 , . . . , q(p)

4 ,
p = 1, . . . , 34.

The aim of the estimation runs is, apart from estimating
the remaining parameters, to show that the group depen-
dent parameters kd

0,1, kc
0,1 are indeed different. We want

to apply Bayesian estimation to the parameters. For this
reason, we principally have to treat them like state vari-
ables in the particle filter. Since the estimation of static
variables is problematic with particle filter methods, it is
standard to introduce small artificial stochastic dynamics
to the parameters consisting of normal increments with
decaying variances [35]. The same is true for the static
noise parameters ηp which also are to be estimated. Our
process Xt is then given as an augmented state vector

Xt =
(

q(1:34)
1:4 (t), kc

0,1(t), k d
0,1(t), k1,2(t), k1,3(t), k3,1(t),

k4,3(t), U1(t), η1:34(t)
)T

.

The overall model is thus a non-linear mixed effects model
with three levels of effects (parameters), namely global
parameters, group dependent parameters (kd

0,1, kc
0,1), and

personal parameters (ζp). Nevertheless, since the core of

the model is linear, i.e. the states q1, . . . , q4 conditioned on
all parameters, a Rao-Blackwellization concerning the lin-
ear parts of the model is possible, and the Kalman filter
applied to this linear partial model can be used in combi-
nation with particle filtering for the non-linear parts [36].
Since the model is used for demonstration purposes only,
we did not use this technique although in principle it is
possible.

Estimation runs
Estimation and simulation runs have been performed with
data from all 34 patients (19 from control group and 15
from diabetes group). The computer experiments have
been done as follows. We first estimate parameters with
the MTU particle filter. Separately, we estimate param-
eters with the standard particle filter under the same
conditions and with the same seed for the random num-
ber generator. The initial distribution of the particles is
then the same in both cases. For both runs, we compute
an estimate of the effective sample size (ESS) and the data
likelihood over time. Both estimates allow a performance
comparison of the MTU versus the standard particle fil-
ter. Secondly, the empirical medians of the final parameter
distributions are afterwards used to perform simulation
runs in both cases. Both versions of the particle filter, this
time with parameters fixed to the estimated values, are
used to perform these simulations. In these simulation
runs, the data are used for the computation of the data
likelihood conditioned on the estimated parameters. The
resulting distributions of the simulated measurements can
be compared to the true measurements, both visually and
by observing the data likelihood.

We used 10,000 particles and a resampling threshold of
7,500. Stepsizes in the MTU filter are between 10−7h and
10−3h, adaptively computed based on the ESS estimate.
In the standard filter, we use a fixed stepsize of 10−3h.
The data contain measurements until time t = 8h, but
we perform estimations and simulations only until time
t = 1h, mainly to reduce computation time; anyhow, after
t = 1h, the tracer concentrations are relatively low and do
not change considerably, and therefore the measurements
are not expected to improve the estimations significantly.
In our implementation, we directly sample from the states
Xt (i.e. X̃[t0,∞) = X[t0,∞) in law) using the Euler-Maruyama
scheme for discretization [37].

As mentioned earlier, Bayesian parameter estimation
with particle filters requires the introduction of artificial
dynamic noise for the parameters. It is standard to use
normal increments with decaying variances [35]. Since
in our case all parameters with exception of the ηp’s are
assumed to be positive, the application of a “log-normal”
noise (based on a geometric Brownian motion) in place
of the standard normal noise seems to be more appro-
priate for these parameters. In detail, it has been done as
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follows. The priors and the distributions of the artificial
noise are chosen to be log-normal for all parameters with
exception of the individual parameters ηp which have nor-
mal priors and noise. The prior for the parameters kc

0,1,
kd

0,1, k1,2, k1,3, k3,1, k4,3 is Log-N (0, 12), the prior for U1 is
Log-N (log(100), 12). The prior for each ηp is N (0, 0.52).
The parameter update (“artificial noise”) is generally per-
formed according to

dθ(t) = θ(t)σθ (t) dW θ
t

for θ = kc
0,1, kd

0,1, k1,2, k1,3, k3,1, k4,3, U1, and according to

dθ(t) = σθ (t) dW θ
t

for θ = ηp. It is standard to decrease the variance of the
artificial noise over time. In our case we have chosen the
diffusion parameter σθ of each artificial noise variable to
be dependent on time via a quadratic function

σθ (t) = aθ /(t − bθ )
2

with parameter dependent coefficients aθ and bθ . Prac-
tically, aθ and bθ have been determined by fixing two
interpolation points (t0, σθ (t0)) and (t1, σθ (t1)). It holds:

bθ = (t1 − t0)/
(

1 − √
σθ (t0)/σθ (t1)

)
and

aθ = σθ (t0)(t0 − bθ )
2.

We found best performance with the following choices:
For all parameters, we have chosen t0 = 0h, t1 = 2h and
σθ (t1) = σθ (t0)/10 which means that the diffusion param-
eter has dropped to 10% of its initial value at time t = 2h.
The initial values are σθ (t0) = 0.5h for all parameters with
exception of the ηp’s which have higher initial diffusion
σθ (t0) = 1h.

As mentioned earlier, we have performed two different
estimation and simulation runs, one with the MTU par-
ticle filter with distributed measurement times, and for
comparison one run with the standard particle filter. In
the MTU particle filter, the distributions of the measure-
ment times are truncated normal distributions with mean
equal to the nominal value of the measurement time and
with variance 0.0012. The normal distribution is truncated
at the time point 0.01h left and right from the mean value.
In Figure 9, the development of the estimated effective
sample size and the estimated data likelihood is shown,
both with respect to time t. The development of predic-
tions of the measurements during a simulation run with
the final estimated parameters is shown in Figures 10
and 11 for the run with the standard particle filter, and
in Figures 12 and 13 for the run with the MTU par-
ticle filter. Finally, in Figures 14 and 15, box plots of
the final estimated global and individual parameters are
shown, respectively.
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Figure 9 Development of estimated effective sample size and estimated data likelihood during estimation runs. Standard particle filter
(top) and MTU particle filter (bottom).
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Figure 10 Predicted measurement distribution over time (standard particle filter) during simulation run. Patients from diabetes group.
Development of predicted measurement distributions over time during simulation run with parameters estimated by the standard particle filter.
Circles: Measurements. Solid line: Median of simulated measurements. Violet shaded area: Measurement distributions based on empirical quantiles.

A comparison of the results of MTU-PF and standard
particle filter shows that both algorithms exhibit very
similar performance with respect to the quality of the esti-
mated parameters, since in both cases the development
of the data likelihood is very similar both for estima-
tion and simulation. The estimated log-likelihood of the
data at the final time is 137.239 for the MTU particle
filter and 136.207 in the standard case, which is prac-
tically equal. The computation time of the MTU-PF is

only slightly higher than the one of the standard filter.
Visual inspection of the simulation runs shows that the
simulated measurements of the model with parameters
estimated by both filters fit the data in a similar way.
This impression is supported by the values of the esti-
mated data likelihood. The MTU particle filter has a final
log-likelihood value of 157.622, similar to the one of the
standard filter with a value of 155.952. The difference
is insignificant.
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Figure 11 Predicted measurement distribution over time (standard particle filter) during simulation run. Patients from control group.
Development of predicted measurement distributions over time during simulation run with parameters estimated by the standard particle filter.
Circles: Measurements. Solid line: Median of simulated measurements. Violet shaded area: Measurement distributions based on empirical quantiles.
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Figure 12 Predicted measurement distribution over time (MTU particle filter) during simulation run. Patients from diabetes group.
Development of predicted measurement distributions over time during simulation run with parameters estimated by the MTU particle filter. Circles:
Measurements. Solid line: Median of simulated measurements. Violet shaded area: Measurement distributions based on empirical quantiles.

In contrast to the insignificant differences concerning
the resulting likelihoods between the MTU-PF and the
standard PF, the development of the ESS estimate in the
estimation runs differs remarkably. With the MTU parti-
cle filter, the ESS estimate shows a high value at all times
and does not drop below a value of 7032.661 during esti-
mation. This is only slightly lower than the resampling
threshold of 7500 (see Figure 9, upper part). The standard
particle filter shows a much worse performance. As can be

observed from the lower part of Figure 9, the ESS drops
several times to very low values, reaching a minimum of
101.102. The ESS measures in some sense the variance of
the normalized particle weights (low ESS means high vari-
ance) and highly varying weights indicate that the particle
cloud is in a bad condition, since in this case a few particles
with very high weights dominate the majority of the par-
ticles with very low weights. The extreme case is ESS = 1
where only one particle has a significant weight. After
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Figure 13 Predicted measurement distribution over time (MTU particle filter) during simulation run. Patients from control group.
Development of predicted measurement distributions over time during simulation run with parameters estimated by the MTU particle filter. Circles:
Measurements. Solid line: Median of simulated measurements. Violet shaded area: Measurement distributions based on empirical quantiles.
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Figure 14 Estimated global and group parameters. Box plots of estimated distributions for the global parameters and the group dependent
parameters. The medians are depicted with triangles (standard particle filter) or circles (MTU particle filter). The bottom and top of the box are the
0.25-quantile and the 0.75-quantile, i.e. 50% of the values lie within the box. The whiskers mark the 0.025-quantile and the 0.975-quantile, i.e. 95% of
the values lie between the whiskers. The values for U1 have been scaled by a factor of 0.01 in order to fit into the plot.

a resampling step, only the information carried by this
particle is present in the current particle cloud. Results
obtained by estimation runs where such low ESS values
have occurred cannot be trusted very much. If in con-
trast a resampling step is performed while the ESS is only
slightly below the resampling threshold, which is the case
in the MTU-PF algorithm, then many different particles
will be chosen during resampling and a high percentage
of the information contained in the particle cloud will be
carried over to subsequent steps. In this sense, the MTU
particle filter avoids the degeneration of the particle cloud
by controlling the value of the ESS and holding it at a
high value at every time. As a consequence, the estimation
results should be considered to be more reliable than with
the standard algorithm.

A look at the estimated values of the group parameters
kc

0,1 and kd
0,1 (see Figure 14) shows that in both estimation

runs (MTU-PF and standard PF), the rate kd
0,1 for diabetes

patients is only about 60 percent of the rate kc
0,1 of the con-

trol group (standard particle filter: 0.337h−1 vs 0.557h−1,
MTU particle filter: 0.346h−1 vs 0.577h−1). The good per-
formance especially of the MTU particle filter strengthens
the confidence in the obtained result and leads to the con-
clusion that the secretion rate k0,1 is indeed lower for the

diabetes patients than for the people from the control
group.

Conclusions and future work
We proposed a new modification of the particle filter algo-
rithm which works in continuous-time settings. It allows
the direct inclusion of measurement time uncertainties
in the underlying model. The modifications additionally
allow the use of time-stepping strategies to improve the
performance of the algorithm. The assumption of a ran-
dom distribution of measurement times is natural in many
applications.

The MTU-PF method is generally applicable. Even when
measurement times may be assumed to be concentrated
on single time points, our method can be used as a kind
of regularization of the standard particle filter method
if artificial distributions with highly concentrated masses
around the measurement points are introduced.

We compared the performance of the MTU-PF to the
standard PF and to an alternative Maximum Likelihood
estimation method on a small artificial example. The
results clearly show the advantage of the application of the
MTU-PF in cases of uncertain measurement times.

Figure 15 Estimated individual parameters. Box plots of estimated distributions for the individual parameters. The medians are depicted with
triangles (standard particle filter) or circles (MTU particle filter). The bottom and top of the box are the 0.25-quantile and the 0.75-quantile, i.e. 50% of
the values lie within the box. The whiskers mark the 0.025-quantile and the 0.975-quantile, i.e. 95% of the values lie between the whiskers.
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We believe that our MTU particle filter is especially
suitable for biological/medical applications where — com-
pared to technical applications — the variance of the
measurement values is relatively high due to biological
variation and because relatively few consecutive measure-
ments are possible. We provided an illustrative application
from a PK/PD study. A comparison of our MTU parti-
cle filter with the standard filter showed that in this case
our method is able to avoid weight degeneracy measured
in terms of the Effective Sample Size (ESS) estimate. Even
though the estimations in this application with both stan-
dard and MTU particle filters are reasonably good, the fit
to the measurements is still not perfect. Whether that is
due to our choices of model and parameters, or due to
the known weaknesses of the general SMC method (which
also our modification necessarily suffers from), remains
to be evaluated in greater detail. In subsequent studies,
we plan to apply the new algorithm to the complete liver-
plasma model using additional measurements to be able
to draw conclusions of greater medical relevance.

Another topic may also prove interesting for future
work. Our experiments showed that the results are highly
dependent on the choice of the development of the dif-
fusion coefficients of the artificial noise necessary for
Bayesian parameter estimation. While there is a general
agreement that these coefficients should decrease over
time, there is currently a lack of automated methods for
making appropriate choices of the diffusion coefficients,
both for initial values and dynamic development. How-
ever, to provide a really practical method for parameter
estimation in non-linear mixed effects models (or even
in models which adhibit only global parameters), our
approach could also be combined with methods better
suited to the estimation of fixed parameters, a good can-
didate being the PMCMC methods proposed in [11]. This
is future work.

In summary, we believe that the method presented in
this article opens the door to even more efficient and
reliable state sampling and parameter estimation meth-
ods based on the particle filter algorithm operating on
continuous-time stochastic state space systems.

Notation
(�,A, P) probability space
(Xt ,BXt ) arbitrary measurable space

(for each t ∈[ t0, ∞) with
t0 ∈ R)

Xt : � → Xt A-BXt measurable random
variable

X[t0,∞) :=(Xt)t∈[t0,∞) continuous-time Markov
process with general state
space X[t0,∞)

X[t0,∞) : = ∏
t0≤s Xs state space of X[t0,∞)

LXt the pushforward measure of P
under Xt , i.e. LXt (B) : =
P(X−1

t (B)) for all B ∈ BXt
LX[t0,∞)

the pushforward measure of
P under X[t0,∞) : = (Xs)s∈[t0,∞)

(with the corresponding
product algebra)

X[t0,t] : = ∏
t0≤s≤t Xs the state space restricted to

the interval [ t0, t]
LX[t0,t] the corresponding

pushforward measure
N number of particles
(xi

t)i=1,...,N state samples at time t
Ks,t(xs, dxt) the Markov kernel of the

process X[t0,∞) from time s
to time t

a(x, t) drift vector
B(x, t) diffusion matrix
Wt multidimensional standard

Wiener process
(Yj,BYj) measurable space
Y1:M observation random variable

with values in measurable
spaces (Yj,BYj)

gj(yj | xtj , tj) conditional probability density
with respect to a reference
measure μYj

μYj reference measure μYj on
(Yj,BYj)

tj (j = 1, . . . , M) observation times
Tj random variables modelling

the uncertainty about exact
observation times

λ[t0,∞) Lebesgue measure on the
interval [ t0, ∞)

γj(tj) probability density of Tj
with respect to λ[t0,∞)

X̃t0:M , LX̃tj
, and Markov chain, pushforward

K̃tj−1,tj(xtj−1 , dxtj) measure, and kernel for
importance sampling

	tj | tj−1(xtj | xtj−1) Radon-Nikodym derivative
Ktj−1,tj (xtj−1 , dxtj )

K̃tj−1,tj (xtj−1 , dxtj )

	t0(xt0) : = dLXt0
(xt0 )

dLX̃t0
(xt0 )

Radon-Nikodym derivative at
start time t0

wi
t unnormalized weight of

particle i at time t
w̃i

t : = wi
t∑N

ν=1 wν
t

normalized weight of
particle i at time t

s� �-th resampling time
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vi
s� (unnormalized) selection

weight
pi

� normalized selection weight
(probability that particle i will
be selected during resampling)

ι� : I → I selection function on the
index set I : = {1, . . . , N} for
the �-th resampling step

Ztk (t1:M) data likelihood
ft full density at time t
f̂t filter density at time t, i.e.

only those observations yj are
included for which tj ≤ t

ḡj,t(yj | xtj , tj) conditional probability
density gj(yj | xtj , tj) if tj ≤ t,
1 otherwise

Wj,t : � → R≥0 stochastic process given by
dWj,t(ω) = (

gj(yj | Xt(ω), t)
−1) γj(t) dt

Wt : � → R≥0 product process of the Wj,t ,
where j = 1, . . . , M

Êt[ h(Xt) | Y1:M = y1:M] expectation of h(Xt) given
Y1:M = y1:M with respect to
the filtered state Xt

wj,t : X[t0,t](�) → R≥0 partial weight at time t (w.r.t.
the j-th observation)

wt : X[t0,t](�) → R≥0 weight at time t
γ̄j,t cumulative distribution

function
∫ t

t0
γj(tj) dtj

w̄j,t(x[t0,t])
∫ t

t0
gj(yj | xtj , tj)γj(tj) dtj

t0 = τ0 < τ1 < . . . < τD time discretization
v̄i cumulative product of the

selection weights for particle i
�τd = τd − τd−1 stepsize
Z̄τd correction factor for the data

likelihood at time τd
Qi mass of the tracee in

compartment i
qi mass of the tracer in

compartment i
Ui input for the tracee in

compartment i (e.g. U1
denotes the influx into
compartment 1)

ui input for the tracer in
compartment i

kj,i transfer coefficient of the
tracers from compartment i
to compartment j

σi diffusion parameter
ξt log-normal noise

(ξt ∼ Log-N (0, σ 2
y1))

kd
0,1, kc

0,1 degradation rate of plasma
leucine for people in the
diabetes group and the
control group, respectively

ζp , ηp patient-dependent random
factors modelling the
parametric uncertainties
among individuals (ζp =
exp(ηp) with ηp ∼ N (0, σ 2

ηp))

Additional file

Additional file 1: Data used for estimation and simulation. The data
consist of one record for each patient, each record consisting of 4 lines in
the following format:

patient id [COMMA] group (control or diabetes) [COMMA] leucine initial
value [NEW LINE]
measurement 1 time [COMMA] measurement 2 time [COMMA]
. . . [COMMA] measurement np time [NEW LINE]
measurement 1 value[COMMA] measurement 2 value [COMMA]
. . . [COMMA] measurement np value [NEW LINE]
[NEW LINE]

where np is the number of measurements for patient p, time is given in
hours, and each measurement value is the measured ratio of isotope
labeled leucine.
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24. Douc R, Cappé O, Moulines E: Comparison of Resampling Schemes for
Particle Filtering. In Proceedings of the 4th International Symposium on
Image and Signal Processing and Analysis, 2005. ISPA, Zagreb, Croatia: IEEE;
2005:64–69.

25. Hol JD, Schön TB, Gustafsson F: On resampling algorithms for particle
filters. In Proceedings of Nonlinear Statistical Signal Processing Workshop
(NSSPW). Cambridge, UK: IEEE; 2006:79–82.

26. Pitt MK, Shephard N: Filtering via simulation: auxiliary particle filter.
Journal of the American Statistical Association 1999, 94:590–599.

27. Del Moral P, Doucet A, Jasra A: Sequential Monte Carlo samplers.
Journal of the Royal Statistical Society: Series B (Statistical Methodology)
2006, 68(3):411–436.

28. R Development Core Team: R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria 2011.
[http://www.R-project.org]. [ISBN 3-900051-07-0].

29. Demant T, Packard CJ, Demmelmair H, Stewart P, Bedynek A, Bedford D,
Seidel D, Shepherd J: Sensitive methods to study human
apolipoprotein B metabolism using stable isotope-labeled amino
acids. Am J Physiol 1996, 270(6 Pt 1):E1022–36.

30. Cobelli C, Saccomani MP, Tessari P, Biolo G, Luzi L, Matthews DE:
Compartmental model of leucine kinetics in humans. Am J Physiol
1991, 261(4 Pt 1):E539–50.

31. Adiels M, Packard C, Caslake MJ, Stewart P, Soro A, Westerbacka J,
Wennberg B, Olofsson SO, Taskinen MR, Borén J: A new combined
multicompartmental model for apolipoprotein B-100 and
triglyceride metabolism in VLDL subfractions. Journal of Lipid Research
2005, 46:58–67.

32. Adiels M, Borén J, Caslake MJ, Stewart P, Soro A, Westerbacka J, Wennberg
B, Olofsson SO, Packard C, Taskinen MR: Overproduction of VLDL1
Driven by Hyperglycemia Is a Dominant Feature of Diabetic
Dyslipidemia. Arteriosclerosis, Thrombosis, and Vascular Biology 2005,
25(8):1697–1703.

33. Adiels M: A compartmental model for kinetics of apolipoprotein
B-100 and triglycerides in VLDL1 and VLDL2 in normolipidemic
subjects. Licentiate thesis, Chalmers University of Technology, Göteborg
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